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This article analyses stationary scalar mixing downstream an open flow Couette device
operating in the creeping flow regime. The device consists of two coaxial cylinders
of finite length Lz, and radii κR and R (κ < 1), which can rotate independently. At
relatively large values of the aspect ratio α = Lz/R � 1, and of the Péclet number
Pe, the stationary response of the system can be accurately described by enforcing
the simplifying assumption of negligible axial diffusion. With this approximation,
homogenization along the device axis can be described by a family of generalized
one-dimensional eigenvalue problems with the radial coordinate as independent
variable. A variety of mixing regimes can be observed by varying the geometric
and operating parameters. These regimes are characterized by different localization
properties of the eigenfunctions and by different scaling laws of the real part of
the eigenvalues with the Péclet number. The analysis of this model flow reveals
the occurrence of sharp transitions between mixing regimes, e.g. controlled by the
geometric parameter κ . The eigenvalue scalings can be theoretically predicted by
enforcing eigenfunction localization and simple functional equalities relating the
behaviour of the eigenvalues to the functional form of the associated eigenfunctions.
Several flow protocols corresponding to different geometric and operating conditions
are considered. Among these protocols, the case where the inner and the outer
cylinders counter-rotate exhibits a peculiar intermediate scaling regime where the real
part of the dominant eigenvalue is independent of Pe over more than two decades
of Pe. This case is thoroughly analysed by means of scaling analysis. The practical
relevance of the results deriving from spectral analysis for fluid mixing problems in
finite-length Couette devices is addressed in detail.

1. Introduction
The evolution of a scalar field in a laminar flow admits a wealth of practical

and theoretical implications in chemical and mechanical engineering (Baldyga &
Bourne 1999; Pelesko & Bernstein 2003), meteorology (Shepherd, Koshyk & Ngan
2000), biotechnology (Beebe, Mensing & Walker 2002; Raynal et al. 2007), geology
(Perugini, Poli & Mazzuoli 2003) and environmental biology (Scheuring et al. 2000,
2003). The physical phenomenology underlying the evolution of a scalar field (be it
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the concentration of a tracer, temperature, etc.) in a moving continuum is customarily
referred to as fluid mixing.

In all of the cases where the coupling between the evolution of the scalar field
and the momentum transport equation of the carrier flow can be neglected (the two
transport equations are typically coupled by the dependence of density and viscosity
on the scalar concentration), the mixing dynamics of the scalar field is governed by
the interplay between advection and diffusion, quantitatively described by the linear
advection–diffusion equation

∂φ

∂t
= −∇ · (vφ) + D ∇2φ, (1.1)

where φ is the concentration of the (scalar) transported entity, v the velocity field and
D the diffusion coefficient. Equation (1.1) must be equipped with proper initial and
boundary conditions, which depend on the specific flow problem considered, on the
nature of the flow domain and on the initial profile of the scalar field.

A simple way to categorize different fluid mixing problems can be grounded on the
nature of the flow domain. In this framework, three main categories can be identified,
namely (i) infinitely extended flow domains, (ii) closed bounded flows and (iii) open
bounded flows.

In unbounded flow domains, fluid mixing is equivalent to dispersion, where
the properties of a scalar tracer are characterized in a long-time long-distance
perspective. Examples of physical processes where this approach is sensibly applied are
environmental pollutant dispersion in large-scale oceanographic analysis, or ecosystem
stability studies to unveil the effect of fluid streams. The theoretical analysis of
dispersion can be tackled either by means of probabilistic methods, or through
homogenization techniques (Bensoussan, Lions & Papanicolau 1978; Fannjiang &
Papanicolaou 1994; Majda & Kramer 1999). Typical flow models in infinitely extended
domains involve either cellular flows (Fannjiang & Papanicolaou 1994) or infinitely
long tubes, such as in the analysis of Taylor–Aris dispersion in capillaries (Taylor
1953; Aris 1956).

In finite-sized domains delimited by impermeable boundaries (closed flows), the
large-scale analysis of the spatial structure of an evolving scalar field is intrinsically
meaningless. The natural setting for the analysis is instead provided by the interaction
between non-trivial kinematic behaviours, induced by convective mixing, which causes
stretching and folding of material elements (Childress & Gilbert 1995), and the
smoothing action of diffusion. Of particular interest is therefore the analysis of flow
fields which give rise to chaotic behaviour of fluid particles in the diffusionless
(kinematic) limit (Aref 1984; Beigie, Leonard & Wiggins 1994; Boyland, Aref &
Stremler 2000; Voth, Haller & Gollub 2002).

When diffusion is accounted for in a closed flow, fluid mixing can be described in
terms of homogenization dynamics of the scalar field φ, which quantifies the relaxation
towards the equilibrium state characterized by a uniform concentration throughout
the mixing space. The time scales and the characteristic concentration patterns that
are attained during the homogenization process are related to the eigenvalues and
to the eigenfunctions of the advection–diffusion operator in the case where the flow
protocol is autonomous (i.e. the velocity field v(x) does not depend on time), or
of the Poincaré–Floquet operator associated with the advection–diffusion operator
(which maps the concentration field over one period of flow motion) in the case
of time-periodic-velocity fields v(x, t + T ) = v(x, t) (Giona, Cerbelli & Vitacolonna
2004a).
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Numerical simulations (Toussaint, Carriere & Raynal 1995; Toussaint et al. 2000;
Giona et al. 2004a; Cerbelli et al. 2004; Gleeson et al. 2004; Gleeson 2005) and
theoretical analysis (Giona, Cerbelli & Vitacolonna 2004b; Giona et al. 2004c; Liu and
Haller 2004a ,b) provide a fairly detailed picture of the properties of homogenization
dynamics in closed systems. We are quoting here solely those articles in which the
authors solve numerically or approach analytically the advection–diffusion equation.
In point of fact, there is a parallel and quantitatively consistent stream of articles
which, instead of solving (1.1), analyse the pulsed system associated with (1.1),
where the action of advection and diffusion is temporally decoupled (Sukhatme &
Pierrehumbert 2002; Pikovsky & Popovich 2003). For a critical analysis of the pulsed
system approximation see Giona, Adrover & Cerbelli (2005).

A detailed analysis of the dependence of homogenization time scales on the Péclet
number and of the occurrence of different mixing regimes in planar flows consisting
of closed streamlines is developed in Rhines & Young (1983) and Bajer, Bassom &
Gilbert (2001).

For parallel autonomous flows, which is a simple class of non-chaotic flows, a
theoretical prediction of the asymptotic scaling of the real part μR of the dominant
eigenvalue of the convection-enhanced branch of the spectrum as a function of the
Péclet number Pe, and of the properties of the velocity field has been obtained
in Giona et al. (2004b,c) by enforcing the formal analogy between (1.1) and the
Schrödinger equation in the presence of an imaginary potential. For the closed
Couette flow, the theory predicts −μR ∼ Pe−1/3 at large Pe. This result was also
obtained in Thyagaraja, Loureiro & Knight (2002).

Open flow systems are ubiquitous in continuously operating flow devices (mixers,
separation units, chemical reactors, laboratory equipment). As regards micromixers,
typical process requirements consist of achieving a prescribed degree of mixedness
at the outlet section for a segregated inlet stream. An optimal flow protocol is such
that this task is accomplished within an assigned overall length of the device so as
to minimize the mean residence time. The open nature of the device reflects into the
boundary conditions complementing (1.1) at the inlet and outlet section, which specify
the convective and/or diffusive fluxes at these boundaries of the mixing domain.

In some cases, as in the analysis of dispersion properties of solute transport in
capillary and chromatographic columns (Ananthakrishnan, Gill & Barduhn 1965),
the approximation of infinitely long channels may be reasonable, such as in the
investigation of Taylor–Aris dispersion (Taylor 1953; Aris 1956). Specifically, in the
analysis of chromatographic experiments, the focus is not centred on mixing properties
of the outlet stream, but rather on the statistical distribution of the solute at the exit
of the column, which can be quantified by considering the hierarchy of moments
associated with the outlet concentration profile. Conversely, in all the applications in
which an open flow device is used to optimize mixing performance, the finite size of
the device should be enforced in the theoretical analysis of the process.

The practical design of efficient open flow devices is particularly important in
MicroElectroMechanical System (MEMS) applications (Ho & Tai 1998; Squires &
Quake 2005; Kim & Beskok 2007). Microfluidic applications involve microsensors,
micrototal analysis systems (μTAS), microreactors for chemical and biomolecular
processing (Karniandakis, Beskok & Aluru 2005; Nguyen & Wereley 2006).

The first systematic analysis of open flow devices dates back to the classical
work by Danckwerts (Danckwerts 1953), which was subsequently generalized by
Zwietering (Zwietering 1959). The Danckwerts’ theory (Danckwerts 1953) for open
flows is organized into two main contributions: (i) the definition of the residence
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time distribution, which represents a global description of the flow properties of a
flow device and (ii) the characterization of ‘micromixing’ through the use of the
concepts of fluid particle age and fluid particle lifetime, based on which a cumulative
index of the ‘degree of micromixing’ can be deduced (Danckwerts 1958). Even though
residence time distributions are still used to characterize the global fluid dynamics
in microdevices (Castelain et al. 1997; Trachsel et al. 2005), these quantities are
generally weakly connected with the physics of mixing. In point of fact, neither
the residence time distribution nor the particle-age formalism (which represents a
finer characterization of the time scales associated with the survival of fluid elements
within the device) provide a satisfactory measure of the mixing efficiency of an open
flow system. As regards the particle-age formalism, it has been observed by several
authors (see e.g. Baldyga & Bourne 1999) and references therein, that the degree of
micromixing proposed by Danckwerts provides a quantitative description of the effect
of back-mixing in tubular reactors but gives no information on the effect of mixing
occurring within the cross-section of the equipment.

In general, open flow systems offer a variety of different operating conditions,
which find no correspondence in closed devices. Moreover, in many applications (e.g.
microfluidics), the Péclet number ranges in the interval (101, 105), which indicates that
the effect of diffusion should be necessarily taken into account (Nguyen & Wu 2005;
Nguyen & Wereley 2006). Therefore, for a proper understanding of flow processes, it
is essential to consider the interaction between advection and diffusion. This means
that the analysis of mixing should be grounded on the study of (1.1), where advection
and diffusion act alongside each other in a time continuous frame.

The analysis of mixing properties of open flow systems in the presence of diffusion
is very limited, since many contributions focus on the effect of pure advection
(Hardt et al. 2005; Metcalfe et al. 2006). Some authors have performed numerical
investigations on the solutions of (1.1) in micromixers (Jen et al. 2003; Kim et al.
2005; Wu & Nguyen 2005). Other interesting properties of open flows have been
analysed in Tel et al. (2005) and Straube & Pikovsky (2007). Giona, Cerbelli & Creta
(2008) recently analysed the dependence of the characteristic time to reach stationary
behaviour in finite-length channels.

The aim of this work is to provide a systematic analysis of the mixing properties
of a simple physically realizable non-chaotic flow, obtained by the solution of the
advection–diffusion equation (1.1), focusing on stationary properties. In point of
fact partially chaotic or even non-chaotic flows are gaining increasing interest in
microfluidics, since, due to pressure-drop and fabrication constraints, it is not always
possible to achieve globally chaotic conditions (Gleeson et al. 2004; Nguyen & Wu
2005).

The model system considered in this article is an open Couette device, composed
by coaxial cylinders of finite length, which is assumed to operate in the creeping flow
regime. The process stream is pushed through the annular gap by an axial pressure
drop, and is subject to the cross-sectional flow generated by the steady rotation of
the cylinders, thus providing a prototypical example of helical flow. Different flow
conditions can be obtained by varying the geometry (ratio between the inner to the
outer cylinder radii), and the operating conditions (angular velocities of the inner
and outer cylinders).

Therefore, the open Couette flow is a very versatile model for studying the
occurrence of different mixing regimes, how mixing is influenced by the structure
of the flow field, and what is the role of a non-uniform axial velocity profile (which
is typical of open laminar flow devices) on the homogenization process.
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The characterization of different mixing regimes can be approached through the
spectral (eigenvalue/eigenfunction) properties of the advection–diffusion operator.
We follow an approach similar to that developed in Giona et al. (2004b). Theoretical
analysis is made possible by adopting the simplifying assumption of negligible axial
diffusion (NAD). In § 2.4 we analyse and motivate this assumption, which is accurate
starting from relatively small values of the Péclet number and of the system aspect
ratio. By adopting the NAD assumption, spectral analysis simplifies to the study
of a generalized second-order eigenvalue problem in the presence of an imaginary
potential.

This formulation permits to unveil the occurrence of a variety of different mixing
regimes which are associated with different localization properties of the convection-
enhanced eigenfunctions. By changing the geometry and the angular velocities of
the two cylinders several spectral ‘phase-transitions’ occur, which influence fluid
mixing. Moreover, the behaviour of the real part of the dominant eigenvalue of
the convective branch is characterized by the occurrence of a variety of different
intermediate scalings. For all of these reasons, we believe that the open Couette flow
may provide a useful prototype for mixing studies in laminar (non-chaotic) open
mixers.

The article is organized as follows. Section 2 describes the flow model and addresses
briefly the mathematical formulation of mixing in open flow systems. This section
discusses also the validity of the NAD approximation. Section 3 introduces the
spectral properties of the advection–diffusion operator, such as localization and
spectral invariance in the case of the Couette plug flow, i.e. when axial velocity is
assumed to be uniform. Section 4 addresses the spectral properties of the Couette
flow and how the scaling of the dominant convection-enhanced eigenvalue depends
on the geometric and flow parameters. Section 5 provides a theoretical explanation
for the different scaling regimes observed, and for the localization properties of the
eigenfunctions. The transition between different mixing regimes can be interpreted as
a bifurcation controlled by the radius of the inner cylinder, or by the angular velocity
of one of the two cylinders.

A peculiar situation occurs when the cylinders are counter-rotating. Beyond the
asymptotic scaling and localization phenomena, this flow protocol admits interesting
scaling regimes for intermediate values of Pe that are analysed in § 6 with the
aid of several approximate methods. Finally, § 7 addresses some physically relevant
observations such as the role of dimensionless numbers, and how the spectral
characterization impacts on the design of finite-length devices. The appendices
describe the numerical details and some analytical calculations.

2. Statement of the problem
2.1. Flow system

Consider the annular space between two concentric cylinders of length Lz and radii
Rin, Rout , respectively (figure 1). We assume that the inner and outer cylinders rotate
with constant angular speed, Ω1 and Ω2, respectively. An overall pressure drop
�P = P0 − PL is applied to the flow device. Let (r, θ, z) be a cylindrical coordinate
system coaxial with the device.

The creeping flow solution (at vanishing Reynolds numbers) of the Navier–Stokes
equation for an incompressible Newtonian fluid can be obtained by superimposing
the two-dimensional flow onto the cross-section v⊥(x⊥) = (vr (r, θ), vθ (r, θ)) = (0, vθ (r)),
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Figure 1. Sketch of the flow system geometry.

and the axial pressure-driven flow vz(r). The latter is given by

vz(r) =
�PR2

out

4μLz

[
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r

Rout

)2
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log κ
log

(
r

Rout

)]
, (2.1)

where μ is the fluid viscosity, and Rin = κRout , 0 <κ < 1. The axial velocity vanishes
at r = Rin, Rout . The average axial velocity over the cross-section is given by W :

W =
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out

4μLz

Kf , Kf =
1

2

(
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)
. (2.2)

Therefore, the axial velocity can be expressed as

vz(r) =
W

Kf

[
1 −

(
r

Rout

)2

− (1 − κ2)

log κ
log

(
r

Rout

)]
. (2.3)

The cross-sectional flow vθ (r) can be expressed as the superposition of two functions
uh(r), h = 1, 2,

vθ (r)

r
= Ω1u1(r) + Ω2u2(r), (2.4)

where Ω1, and Ω2 are the angular velocities of the inner and outer cylinder respectively.
The functions uh(r) = Ah + Bh/r2, h =1, 2, subjected to the boundary conditions
u1(Rin) = 1, u1(Rout ) = 0, u2(Rin) = 0, u2(Rout ) = 1, are given by

u1(r) =
1 − (Rout/r)2

1 − 1/κ2
, u2(r) =

1 − (κRout/r)2

1 − κ2
. (2.5)

Let U =Ω2Rout be the velocity of the outer cylinder. The flow conditions of the system
are specified by the pair of dimensionless angular velocities Ω = (ω1, ω2), where
ω1 = Ω1/Ω2, and ω2 = 1. Throughout the article, we consider two flow conditions:
Ω = (0, 1), corresponding to a static inner cylinder, and Ω = (−1, 1), when the inner
and outer cylinder are counter-rotating with the same absolute angular speed.

In order to highlight how the spectral properties depend on the flow conditions, we
consider also a simplified version of the Couette flow, corresponding to the assumption
that the axial velocity is uniform across the cross-section, i.e.

vz(r) = W = constant, (2.6)

while the cross-sectional flow is still given by (2.4)–(2.5). The latter case is referred to
as the Couette plug flow.
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2.2. Advection–diffusion equation

Consider the advection–diffusion equation at steady state for the scalar field φ:

vθ (r)

r

∂φ

∂θ
+ vz(r)

∂φ

∂z
= D

[
1

r

∂

∂r

(
r
∂φ

∂r

)
+

1

r2

∂2φ

∂θ2
+

∂2φ

∂z2

]
. (2.7)

By introducing the dimensionless quantities

ρ =
r

Rout

, ζ =
z

Lz

, w(ρ) =
vz(Rout ρ)

W
, u(ρ) =

vθ (Routρ)

Uρ
, (2.8)

equation (2.7) becomes

Γ αu(ρ)
∂φ

∂θ
+ w(ρ)

∂φ

∂ζ
=

1

Pe

[
α2

ρ

∂

∂ρ

(
ρ

∂φ

∂ρ

)
+

α2

ρ2

∂2φ

∂θ2
+

∂2φ

∂ζ 2

]
, (2.9)

where

α =
Lz

Rout

, Γ =
U

W
, Pe =

WLz

D . (2.10)

The geometric parameter α is the aspect ratio, and is generally much larger than
1, while Γ is the ratio of rotational to mean axial velocity. The Péclet number
Pe is defined with respect to the characteristic axial velocity and to the length of
channel. Other definitions of the Péclet number are possible (e.g. by considering U

as a characteristic velocity and Rout as a characteristic length scale), which can be
more useful for specific purposes (e.g. for the optimization of mixing performance).
A detailed discussion of these alternative non-dimensional settings is addressed in § 7.
Throughout the article we assume α = 6, Γ = π (for a discussion on the influence of
α and Γ see § 7). As regards the geometry of the system, we consider the two cases,
κ = 0.4 and κ =0.8.

Equation (2.9) is equipped with the boundary conditions ∂φ/∂ρ|ρ = κ,1 = 0, expressing
impermeability at the solid walls φθ = 0 = φθ = 2π, ∂φ/∂θ |θ = 0 = ∂φ/∂θ |θ =2π, expressing
the periodicity with respect to the angular variable θ and φ|ζ =0 =φin(ρ, θ) (where φin

is a generic inlet profile), ∂φ/∂ζ |ζ = 1 = 0. The latter condition at the outlet section is
usually referred to as Danckwerts’ boundary condition, and it can be regarded as a
closure approximation necessary to specify the solution.

For high values of the Péclet number, if the aspect ratio α is significantly greater
than 1, it is reasonable to neglect the axial diffusion (third term at the right-hand side
of (2.9)) with respect to the cross-sectional diffusion. Therefore, (2.9) becomes

w(ρ)
∂φ

∂ζ
= −Γ αu(ρ)

∂φ

∂θ
+

α2

Pe

[
1

ρ

∂

∂ρ

(
ρ

∂φ

∂ρ

)
+

1

ρ2

∂2φ

∂θ2

]
. (2.11)

Equation (2.11) is referred to as the NAD approximation associated with (2.7), and
can be viewed as a parabolic advection–diffusion equation, in which the dimensionless
axial coordinate ζ plays the role of time. The boundary conditions for (2.11) are the
periodicity along θ , and impermeability at the inner and outer cylinders (ζ = κ, 1),
and the inlet condition φ|ζ=0 = φin(ρ, θ) at ζ = 0. Since the assumption of vanishing
axial diffusion reduces the order of the equation (from second to first) with respect
to ζ , no boundary condition needs be specified at the outlet section. The validity of
the axial diffusion approximation is discussed in § 2.4.

2.3. Mixing in open and closed flow systems

There are analogies and specific differences between the characterization of mixing
(in the presence of diffusion) in closed and open bounded flows.
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Consider first the case of a closed bounded system M, and let ∂τφ = − v · ∇φ +
(1/P e)∇2φ the dimensionless advection–diffusion equation, equipped with no-slip
boundary conditions for the velocity field (supposed incompressible) at the boundary
∂M, and with the Neumann boundary conditions ∂φ/∂n|∂M = 0 for the scalar field
φ. As discussed in § 1, mixing of a scalar concentration field in a closed system is
intrinsically a time-dependent (unsteady) process which asymptotically (i.e. for t → ∞)
leads to a complete homogenization of the mixture, i.e. φ(x, t) =φ = constant, where
φ =

∫
M φ(x, 0) dx.

Mixing efficiency is therefore expressed by the characteristic time scale at which
a prescribed level of homogenization is achieved. The basic relation describing the
relaxation towards the uniform state can be expressed in term of the L2-norm of the
concentration field (Cerbelli et al. 2004):

d||φ||2
L2 (τ )

dτ
= −

2||∇φ̂||2
L2 (τ )

Pe
||φ||2L2 (τ ), (2.12)

where φ̂ = φ/||φ||L2 , and

||φ||L2 (τ ) =

[∫
M

|φ(x, τ )|2 dx

]1/2

, ||∇φ̂||L2 (τ ) =

[∫
M

|∇φ̂(x, τ )|2 dx

]1/2

. (2.13)

The characteristic homogenization time scales associated with the interplay between
advection and diffusion, and the long-term properties of the system are described by
the eigenvalue/eigenfunction spectrum of the advection–diffusion operator (for steady
velocity fields), or of the Poincaré–Floquet operator associated with the advection–
diffusion equation (for time periodic velocity fields). For further details see Cerbelli
et al. (2004).

Turning attention to open bounded flow systems, which is the central subject of
the article, the characterization and quantification of mixing efficiency is somehow
more complex and involved, due to the fact that different features of the interaction
between advection and diffusion are of physical and practical interest.

A general characterization of the system performance might focus on (i) transient
phenomena within the flow domain M, (ii) the relaxation dynamics towards stationary
conditions in the case the inlet condition are maintained steady or (iii) the stationary
response of the flow device. Point (ii) has been addressed in Giona, Cerbelli & Creta
(2008) by considering the Frobenius eigenvalue associated with simple parallel flows
(Schmid & Henningson 2001). The advection–diffusion equation in the presence of
non-negative boundary conditions represents a typical example of a positive linear
system. A linear dynamical system is said positive if, given a non-negative initial
condition, the state variables of the system (here the concentration of the transported
entity) remain non-negative for all positive times. For positive linear systems, a
theorem due to Frobenius states that the dominant eigenvalue, i.e. the eigenvalue with
the largest real part, is always real, and the corresponding eigenvector/eigenfunction
can always be chosen with non-negative entries. Due to this result, the dominant
eigenvalue of a positive linear system is referred to as the Frobenius eigenvalue.

In inflow–outflow systems, the Frobenius eigenvalue is tipically different from zero
and quantifies the time scale to reach the steady-state profile which is not, in general
a perfectly mixed state. Therefore, the Frobenius eigenvalue does not quantify mixing
efficiency, but rather provides a preliminary necessary requirement to motivate the
analysis of mixing efficiency at steady-state, meaning that an excessively long time
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scale would suggest that a steady-state assessment of mixing efficiency might be
inadequate, and that the whole transient behaviour should be considered instead.

In addressing the stationary (mixing) response of a device, which is the main
subject of this article, the formalism can be simplified for channel flows where a
(dimensionless) axial coordinate ζ , and a cross-section S⊥ independent of ζ can be
identified. For channel-like flow devices, the steady advection–diffusion equation in
dimensionless form reads

v⊥ · ∇⊥φ + w ∂ζφ =
1

Pe

(
∇2

⊥φ + ∂2
ζ φ

)
, (2.14)

where ∂ζφ = ∂φ/∂ζ , ∂2
ζ φ = ∂2φ/∂ζ 2, w is the axial component of the velocity field,

and v⊥ and ∇⊥ are the cross-sectional velocity and the cross-sectional nabla operator,
respectively.

Let us introduce the linear functional Q[g](ζ ) associated with a generic scalar
function g(x⊥, ζ ) defined in the mixing domain M:

Q[g](ζ ) =

∫
S⊥

[
w(x⊥, ζ ) g(x⊥, ζ ) − 1

Pe
∂ζg(x⊥, ζ )

]
dx⊥. (2.15)

Elementary manipulations of the steady advection–diffusion equation (2.14) yield

d

dζ
Q[φ](ζ ) = 0 ⇒ Q[φ](ζ ) = constant, (2.16)

which expresses the obvious fact that at steady state the total flux (convective plus
diffusive) of φ across any cross-section is conserved, and

d

dζ
Q[φ2](ζ ) = − 2

Pe

∫
S⊥

|∇⊥φ|2 dx⊥, (2.17)

which is formally similar to (2.12) valid for closed system, and proves that the quantity
Q[φ2](ζ ) is monotonically non-increasing with ζ .

If the NAD approximation is enforced, the functional Q[g](ζ ) simplifies to

Q[g](ζ ) =

∫
S⊥

w(x⊥, ζ ) g(x⊥, ζ ) dx⊥, (2.18)

while (2.16)–(2.17) still hold true.
Two observations follow from the structure of (2.17). If w(x⊥, ζ ) =W = constant,

and the NAD approximation is enforced, then

Q[φ2](ζ ) = W ||φ||L2,S⊥ = W

∫
S⊥

|φ|2 dx⊥, (2.19)

which implies that the stationary evolution along the axial coordinate in an tubular
open flow device is formally identical to that of a closed flow system, in which
the axial coordinate ζ plays the role of time, and S⊥ the role of the closed mixing
space M.

On the other hand, if w(x⊥, ζ ) 
= constant, the steady open flow problem cannot
be mapped into an equivalent closed flow system, and new features specific of open
flow systems may appear, which are related to the non-uniform profile of the axial
component of the velocity.

The homogenization of the cross-sectional scalar profile downstream the device
axis is fully described by the spectral properties of the advection–diffusion operator.
If the NAD approximation is enforced, and if the axial velocity components depend
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solely on the cross-sectional coordinates x⊥ (as e.g. in the creeping Couette flow),
(2.14) shows that the spectral problem reads

λw(x⊥)ψ(x⊥) = −v⊥(x⊥) · ∇⊥ψ(x⊥) +
1

Pe
∇2

⊥ψ(x⊥), (2.20)

where λ is the eigenvalue and ψ(x⊥) the corresponding eigenfunction. Equation (2.20)
is a generalized eigenvalue problem in a two-dimensional domain represented by the
cross-section of the device S⊥, equipped with impermeability boundary conditions
∂ψ/∂n|∂S⊥

= 0, and with no-slip conditions for the cross-sectional velocity v⊥ on ∂S⊥
(v⊥ · n|∂S⊥ = 0, where n is the normal unit vector to ∂S⊥).

2.4. Validity of the axial-diffusion approximation

Before addressing the spectral structure of the advection–diffusion operator, it is
useful to comment on the physical validity of the NAD approximation. From what
discussed in § 2.3, the axial dependence of the quantity

Q(ζ ) =

[∫
S⊥

w(ρ) (φ(ρ, φ, ζ ) − φ)2 ρ dρ dθ

]1/2

, (2.21)

where Q(ζ ) = Q[(φ −φ))2](ζ ), and where φ = Q[φ]/Q[1] is the (axially invariant) cross-
sectional average of the scalar weighted with respect to w(ρ), provides a measure of
the degree of mixing along the channel, and for large Pe is a monotonically decreasing
function of its argument ζ approaching zero at large ζ . Throughout this article, we
consider inlet conditions such that φ =0 and therefore Q(ζ ) quantitatively coincides
with Q[φ2](ζ ).

Figures 2(a) and 2(b) show the comparison of the numerical simulation of the
full boundary value problem (2.9), and the results obtained by enforcing the NAD
approximation, for different values of the Péclet number at κ =0.4, and for the
two different flow configurations: Ω = (0, 1) and Ω = (−1, 1). The inlet condition
φ|ζ =0 =φin(ρ, θ), as been chosen as

φin(ρ, θ) =

{
C for −π/2 � θ � π/2

−C for π/2 � θ � 3π/2
, (2.22)

where the normalization constant C is chosen such that Q(ζ = 0) = 1. Figure 2(a)
refers to Ω = (0, 1) i.e. to a static inner cylinder, and figure 2(b) to Ω = (−1, 1), when
the inner and outer cylinders are counter-rotating. Consider figure 2(a). At Pe =102,
line (a) and (�), shows a quantitative difference between the complete equation (which
includes the 1/P e∂2φ/∂ζ 2 term) and the result of the NAD approximation can be
observed, whereas starting from Pe = 5×102, (line (b) and (�)), this difference becomes
negligible and tends to zero as Pe increases further (line (c) and (�) corresponding to
Pe = 103). A similar result is observed for Ω = (−1, 1) (see figure 2b). For Pe = 2×101,
(line (a) and (�)), an appreciable difference occurs between the solutions of the
complete equation and the NAD approximation. As Pe increases, this difference
tends to decrease (see line (b) and (�), corresponding to Pe =102), and becomes
practically negligible for Pe � 5 × 102. Incidentally, figure 2(b) shows an interesting
physical result, namely that the behaviour of Q(ζ ) is not monotonic with Pe (the
decay of Q(ζ ) is faster for Pe = 102 than for Pe = 2 × 101). This issue is further
discussed in the remainder of the article (§§ 6 and 7).

Analogous results have been obtained for the other geometric configurations
analysed (κ = 0.8), so that the value Pe∗ = 5 × 102 can be assumed as the lower
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Figure 2. Q(ζ ) versus the dimensionless axial coordinate ζ . Comparison of the complete
solution (dots) and the results obtained by neglecting axial diffusion (continuous lines) for
κ = 0.4, α = 6, Γ = π, and for different values of the Péclet number. (a) Ω = (0, 1). Line
(a) Pe =102, (b) Pe = 5 × 102, (c) Pe = 103 (NAD approximation). Dots (�): Pe = 102,
(�): Pe = 5 × 102, (�): Pe = 103 (complete solution). (b) Ω = (−1, 1). Line (a) Pe =2 × 101,
(b) Pe = 102, (c) Pe = 5 × 102, (d) Pe = 103 (NAD approximation). Dots (�): Pe = 2 × 101,
(�): Pe = 102, (�): Pe = 5 × 102, (�): Pe = 103 (complete solution).

threshold starting from which the NAD approximation is reliable for the current
values α = 6 and Γ = π of the aspect and velocity ratio, respectively.

2.5. Localization: a first phenomenological view

In order to motivate spectral analysis of the advection–diffusion operator that is
developed in this article, let us first consider a simple mixing experiment. Consider
the Couette system at κ = 0.4, Ω = (−1, 1) and Pe =106, starting from the inlet
condition (2.22). As for static mixers (Hobbs & Muzzio 1998; Szalai & Muzzio
2003), one can consider the device resulting from connecting in series several identical
mixing units, and analyse the partially mixer structures in stationary conditions at
the outlet section of each unit. Figure 3 show the contour plot of the concentration
profiles (normalized to unit square integral norm weighted with respect to the axial
velocity), and the end of the second and the fifth unit, and the concentration profiles
in the corresponding outlet sections evaluated at θ = π/2. As can be observed, the
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Figure 3. Contour plots of the concentration profiles at the outlet sections of a mixer
consisting of several n= 1, 2, . . . Couette units. (a) n= 2, (c) n= 5. (b), (d ) Concentration
profiles at θ = π/2 at the outlet section of the second and fifth units. In the contour plots
black and white regions correspond to high negative and positive values of the concentration,
respectively, grey regions to vanishing values of φ.

partially mixed structures become progressively localized at some internal point of
the cross-section, showing a rather complex lamellar structure.

The localization of the concentration pattern is a typical feature of the interplay
between advection and diffusion in open flow systems, which determines the
occurrence of different mixing regimes associated with different scalings of the
homogenization exponent with the Péclet number. This phenomenon controls the
whole mixing process and sets in also in the early stage of the homogenization
process. With reference to figure 3 the values of the normalized variance Q(ζ ) (i.e.
such that Q(0) = 1) at the outlet sections of the second and fifth modulus are Q =0.57,
and Q =0.15 respectively.

For a device composed by a sufficiently large number of Couette units, attains an
almost invariant shape. In the case of the operating conditions, depicted in figure 3,
this occurs starting from the tenth modulus (not shown for the sake of brevity). The
occurrence of invariant structures in the concentration profiles are controlled by the
eigenfunctions of the advection–diffusion operator. This motivates the analysis of
the spectral (eigenvalues/eigenfunctions) structure of this operator developed in the
remainder of the article.
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There is another relevant piece of information associated with the concentration
profiles depicted in figure 3. The localized patterns shown in figure 3 suggest that
the chosen inlet condition excites the eigenfunctions of the advection–diffusion
operator associated with the convection-enhanced branch of the spectrum (Giona
et al. 2004b,c), since the eigenfunctions associated with the diffusive branches are not
localized but global functions.

Indeed, in the case of simple flows such as the open Couette system, the
eigenfunctions of the convection enhanced branch are particularly interesting, since
they are associated with a significant enhancement in homogenization process. All of
these issues (localization, structure and scaling of the convection-enhanced spectral
branches) are addressed in the following paragraphs.

3. Dominant eigenvalue and eigenfunction localization
Let us consider the advection–diffusion equation for Pe � Pe∗, Pe∗ � 5 × 102, i.e.

in the range where the NAD approximation provides a reliable description of the
interplay between advection and diffusion.

Since the cross-sectional velocity depends exclusively on ρ, it is convenient to
expand the solution of (2.11) with respect to the e−imθ , m ∈ �, i =

√
−1:

φ(ζ, ρ, θ) =

∞∑
m=−∞

φm(ζ, ρ) e−imθ (3.1)

to obtain for the Fourier coefficients φm(ζ, ρ) the system of equations

w(ρ)
∂φm

∂ζ
= imΓ αu(ρ) φm + εα

[
1

ρ

∂

∂ρ

(
ρ

∂φm

∂ρ

)
− m2

ρ2
φm

]
, m ∈ �, (3.2)

where εα = α2/P e. Equation (3.2) shows that the solution of (2.11) decouples into
a countable family of one-dimensional parabolic problems which depend on the
radial coordinate ρ and are parametrized with respect to m. Henceforth, the spectral
properties of the advection–diffusion operator associated with (3.2) are addressed.

3.1. Norm conditions and eigenvalues

This section derives some basic equalities for the real, μ, and imaginary, q , part of
the eigenvalues λ= μ + iq as a function of the norms and linear functionals of the
corresponding eigenfunction ψ . The eigenvalue problem associated with (3.2) can be
rewritten in a compact form as

λw(ρ) ψ(ρ) = εα D2[ψ](ρ) + iV (ρ) ψ(ρ), (3.3)

where V (ρ) = mΓ α u(ρ) and

D2[ψ](ρ) =
1

ρ

d

dρ

(
ρ

dψ(ρ)

dρ

)
− m2

ρ2
ψ(ρ). (3.4)

For m = 0, V (ρ) = 0 identically, and (3.4) reduces to λw(ρ) ψ(ρ) = εαD2[ψ](ρ), in
which solely the action of diffusion contributes to mixing. Since the contribution
of cross-sectional convection is immaterial, the set of eigenvalues associated with
the eigenvalue problem are referred to as diffusive component of the spectrum.
It can be straightforwardly seen that the real part eigenvalue of the diffusive
spectral component, is directly proportional to the inverse of the Péclet number,
i.e. −μdiff ∼ 1/P e. The diffusive eigenfunctions do not depend on θ . Their level
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curves coincide with the streamlines of the flow, and this is the reason why advection
does not contribute to mixing.

For m 
= 0, the interplay between advection and diffusion becomes effective, and the
corresponding systems of eigenvalues/eigenfunctions is referred to as the convection-
enhanced spectral component. The dominant eigenvalue of this component is generally
obtained by setting m = 1. In point of fact, in the case where Ω = (−1, 1), there is
a small interval of Pe values in which the eigenvalue with the smallest (in absolute
value) real part of the (m =2) system becomes slightly smaller than the eigenvalues
of the (m = 1) system. This issue is briefly addressed in § 4.1.

A generic inlet condition possesses non-vanishing projection on the diffusive
eigenfunctions of the spectrum. However, by exploiting the symmetries of the system,
it is possible to avoid this part, by choosing inlet conditions that possess vanishing
projections onto the diffusive branch. This is the case of the inlet condition expressed
by (2.22), and more generally of any inlet profile that does not depend on the
radial coordinate. For any choice of this type of inlet profile, mixing performance is
controlled by the convection-enhanced part of the spectrum, the dependence of which
on the Péclet number is all but trivial.

However, the diffusive spectral component (occurring for m =0) plays a role in other
physical phenomena that are not strictly related to homogenization. For m =0, the
cross-sectional velocity component does not contribute to homogenization, and thus
the resulting spectral structures derive solely from the interaction between the axial
velocity and cross-sectional diffusion. These spectral structures play a significant role
in the analysis of dispersion phenomena at high Péclet number (Giona, Adrover &
Cerbelli 2009) and in the study of mixing layers in microdevices and T-junctions
(Salmon & Ajdari 2007).

In approaching stationary homogenization properties, the characterization of the
spectral structures (eigenvalues/eigenfunctions) of the operator (3.3) provides a way
of obtaining the asymptotic patterns controlling the homogenization process and the
scaling of the corresponding homogenization exponents, which are related to the
real part of the eigenvalues. The tools for characterizing the spectral behaviour are
essentially two: (i) the observation that the convection-enhanced spectral components
give rise to localized eigenfunctions for high Péclet number, and (ii) the use of simple
integral (norm) equalities, which are described below, in order to predict the behaviour
of the real part of the eigenvalues as a function of the local structure of the axial and
cross-sectional velocities near the localization point. This approach is similar to that
applied for simple closed flows in Giona et al. (2004b,c), and can be viewed as a form
of boundary-layer theory, in which the boundary layer corresponds to the localized
eigenstructures, and the norm equalities provide a tool for quantifying both the width
of the boundary layer and the homogenization rates.

Let L2
ρ([κ, 1]) the space of square summable functions in the interval (κ, 1), equipped

with the inner product 〈φ, ψ〉 =
∫ 1

κ
ρ φ(ρ) ψ∗(ρ) dρ, where ψ∗ is the complex conjugate

of ψ . By taking the inner product of (3.3) with respect to a constant real-valued
function, and observing that 〈D2[ψ], 1〉 = 0, and that both w(ρ) and V (ρ) are real-
valued functions, one obtains λ〈w ψ, 1〉 = λ〈ψ, w〉 = i 〈V ψ, 1〉 = i 〈ψ, V 〉, and therefore

λ 〈ψ, w〉 = i 〈ψ, V 〉. (3.5)

A second useful equality relating the eigenvalues to the norms of the corresponding
eigenfunctions can be obtained by taking the inner product of (3.3) with the
eigenfunction ψ(ρ) itself.
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Due to the boundary conditions of Neumann type on ψ , one obtains∫ 1

κ

d

dρ

(
ρ

dψ

dρ

)
ψ∗(ρ) dρ = −

∫ 1

κ

ρ

∣∣∣∣dψ

dρ

∣∣∣∣2 dρ = −||∂ρψ ||2L2, (3.6)

where ||ψ ||2
L2 = 〈ψ, ψ〉. Therefore, the inner product of (3.3) with ψ leads to

λ ||ψ ||2w = −εα

[
||∂ρψ ||2L2 + m2 ||ψ/ρ ||2L2

]
+ i 〈V ψ, ψ〉, (3.7)

where ||ψ ||2w = 〈w ψ, ψ〉. Since 〈V ψ, ψ〉 ∈ �, (3.7) can be decomposed into
two separate equations for the real (μ) and the imaginary (q) part of the
eigenvalues

μ = − εα

||ψ ||2w
[
||∂ρψ ||2L2 + m2 ||ψ/ρ ||2L2

]
(3.8)

and

q =
〈V ψ, ψ〉

||ψ ||2w
. (3.9)

It can be observed that (3.5) and (3.7) can be envisioned as deriving from the generic
weak formulation of the eigenvalue problem, λ〈wψ, f 〉 = − εα〈∂ρψ, ∂ρf 〉 + i〈V ψ, f 〉,
whereupon f is chosen equal to 1 or ψ . Equation (3.9) indicates that the real part
of the eigenvalues is always non-positive, and that, for m 
= 0, i.e. for the eigenvalues
of the convection-enhanced component, is strictly negative. This result is a direct
consequence of the dissipative nature of the advection–diffusion equation. Equations
(3.5), (3.8)–(3.9) are extensively used in the remainder of the article to derive explicitly
the dependence of the dominant eigenvalue (of the convection-enhanced spectral
branch) on the Péclet number.

3.2. The case of the Couette plug flow

Before addressing the spectral structure of the advection–diffusion operator for the
Couette flow, it is useful to analyse the properties of the Couette plug flow, which is
obtained by setting w(ρ) = 1.

The spectral properties of the advection–diffusion operator in stationary conditions
for the Couette plug flow are identical to those of a two-dimensional closed Couette
flow defined on S⊥, and have been briefly addressed in Giona et al. (2004b).

Consider m =1, i.e. the spectral system possessing the dominant convection-
enhanced eigenvalue. Figure 4 shows the spectrum of the advection–diffusion operator
for m =1 (α =6, Γ = π) for κ = 0.4 (figure 4a,b) and for κ = 0.8 (figure 4c,d ), for several
values of the Péclet number (see Appendix A for details on the numerical solution of
the eigenvalue problem). Figures 4(a, b) and 4(c, d ) refer to the operating conditions
Ω = (0, 1), and Ω = (−1, 1), respectively.

The convection-enhanced branches of the Couette plug flow are characterized by
spectral invariance: as Pe increases the eigenvalues lie on a single master curve, as
can be observed from figure 4(a–d ). This phenomenon has been observed for different
non-chaotic closed flow systems (Giona et al. 2004b).

Let −μd be the real part with reversed sign (μd is negative by (3.8)) of the
dominant eigenvalue of the convection-enhanced branch, and ψd(ρ) = ψR

d + iψI
d the

corresponding eigenfunction. The scaling of −μd as a function of Pe is depicted
in figure 5. Independently of κ and Ω , and for sufficiently large (Pe � 104) μd is
characterized by the scaling

−μd ∼ Pe−1/3 ∼ ε1/3
α . (3.10)
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Figure 4. Spectrum of the (m= 1) convective branch of the Couette plug flow (α = 6, Γ = π).
(a) κ = 0.4, Ω = (0, 1). (�): Pe = 5 × 103, (�): Pe =104, (�): Pe = 5 × 104, (�): Pe = 105. (b)
κ = 0.4, Ω = (−1, 1). (�): Pe = 103, (�): Pe =5 × 103, (�): Pe = 2 × 104, (�): Pe = 8 × 104.
(c) κ = 0.8, Ω = (0, 1). (�): Pe = 2 × 104, (�): Pe = 105, (�): Pe = 5 × 105, (�): Pe = 106. (d )
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Figure 5. Real part of the eigenvalue μd of the convection-enhanced branch versus Pe for
the Couette plug flow (α = 6, Γ = π). Symbols (�) refer to κ =0.8, Ω = (−1, 1), (�) to κ = 0.8,
Ω =(0, 1), (�) to κ = 0.4, Ω = (−1, 1), (�) to κ = 0.4, Ω = (0, 1). The solid line depicts the
scaling μ ∼ Pe−1/3.

There is another peculiarity that can be observed from the data depicted in figure 5,
namely the occurrence of a non-monotonic behaviour of the dominant eigenvalue
at increasing Pe. Specifically, while for κ = 0.4 the real part −μd is a monotonically
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Figure 6. (a) Modulus of the dominant eigenfunction |ψd (ρ)| of the convective branch versus
1 − ρ for the Couette plug flow with κ = 0.4, Ω = (−1, 1). The arrow indicates increasing
values of Pe = 103, 104, 105, 106, 107. (b) Invariant rescaling of of the dominant eigenfunction
|ψi(ξ )| of the convective branch versus ξ = (1 − ρ)/β(ε) for the Couette plug flow at κ = 0.4,
Ω = (−1, 1). Solid line corresponds to Pe = 104, dots (�) to Pe = 105, (�) to Pe = 106, (�) to
Pe = 107.

decreasing function of Pe, for κ = 0.8 the graph of −μd(Pe) displays a local maximum
occurring for Pe � (103, 2 × 103), depending on the operating conditions. This means
that there exist intermediate values of the Péclet number for which mixing performance
is optimal. This phenomenon is even more pronounced for the creeping Couette flow
and is addressed in § 6.

The scaling law equation (3.10) is a consequence of the localization of the dominant
convective eigenfunction close to the walls of the flow domain (there exist spectral
branches that become localized close to ρ = κ and close to ρ = 1, but the branch
possessing the lowest decay exponent corresponds to eigenfunctions localized at
ρ = 1). Eigenfunction localization becomes more pronounced as Pe increases. This
phenomenon is depicted in figure 6(a), for κ =0.4, Ω = (−1, 1).

In point of fact, for Pe large enough, the dominant eigenfunctions ψd(ρ; εα) (the
explicit dependence of ψd on the parameter εα is here included) admits an invariant
rescaling

ψd(ρ; εα) = A(εα) ψd,i

(
1 − ρ

β(εα)

)
, εα → 0, (3.11)

where ψd,i is an invariant function independent of Pe, i.e. of εα , β(εα) → 0 for εα → 0,
and A(εα) is a normalization factor (such that the eigenfunction norm equals 1). The
occurrence of the invariant rescaling expressed by (3.11) is depicted in figure 6(b)
for κ =0.4, Ω = (−1, 1). Analogous results are obtained for any other operating
conditions of the Couette plug flow.

3.3. Scaling of the dominant convective eigenvalue

Although the analysis developed in Giona et al. (2004b) permits to predict the scaling
behaviour (3.10) found for the Couette plug flow, the derivation of this equation in
a cylindrical system has not been reported elsewhere. For this reason, this section
briefly addresses these properties, since the method adopted for the Couette plug flow
can be adapted with minor modifications to the more complex cases of the creeping
Couette flow, i.e. when w(ρ) is no longer constant.

Essentially, in order to predict the asymptotic scaling of the dominant convective
eigenfunction, two main results are needed: (i) the equalities expressed by (3.8) and
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(3.5), and (ii) the localization ansatz and the resulting invariant rescaling expressed by
(3.11). The proof of (3.10) follows by enforcing (3.11) within (3.7) and (3.5).

Let us assume the validity of (3.11), where β(εα) is an unknown function of εα ,
which is solely characterized by the property of being a monotonically decreasing
function of its argument, tending to zero for εα → 0 (this follows from the localization
ansatz).

Substituting (3.11) into the expression for the L2-norm of ψd ,

||ψd ||2L2 = A2(εα)

∫ 1

κ

∣∣∣∣ψd,i

(
1 − ρ

β(εα)

) ∣∣∣∣2 ρ dρ, (3.12)

and making the change of variable 1 − ρ = ξ β(εα), the integration limits become
ξ1 = 0 (for ρ = 1), and ξ2 = (1 − κ)/β(εα) (for ρ = κ). For small εα , ξ2 � 1, and since
the function ψd,i is localized in a neighbourhood of ξ =0, the upper integration limit
can be substituted with ξ2 = ∞. Therefore, (3.12) becomes

||ψd ||2L2 = A2(εα) β(εα)

∫ ∞

0

|ψd,i(ξ )|2 (1 − ξβ(εα)) dξ = A2(εα) β(εα) [C0 − β(εα)C1 ]

= A2(εα) β(εα) C0 + O(β2), (3.13)

where C0 =
∫ ∞

0
|ψd,i(ξ )|2 dξ and C1 =

∫ ∞
0

ξ |ψd,i(ξ )|2 dξ .
In a similar way, the remaining norms entering (3.8) can be expressed as

||ψd/ρ||2L2 = A2(εα)

∫ 1

κ

1

ρ

∣∣∣∣ψd,i

(
1 − ρ

β(εα)

)∣∣∣∣2 dρ = A2(εα) β(εα)

∫ ∞

0

|ψd,i(ξ )|2
1 − ξβ(εα)

dξ

= A2(εα) β(εα) C0 + O(β2), (3.14)

and

||∂ρψd ||2L2 = A(εα)

∫ 1

κ

ρ

∣∣∣∣∂ψd,i((1 − ρ)/β(εα))|2
∂ρ

∣∣∣∣2 dρ =
A2(εα)

β(εα)
[D0 + β(εα)D1 ]

=
A2(εα)

β(εα)
D0 + O(1), (3.15)

where D0 =
∫ ∞

0
|∂ψd,i(ξ )∂ξ |2 dξ , D1 =

∫ ∞
0

ξ |∂ψd,i(ξ )∂ξ |2 dξ . By substituting (3.13)–
(3.15) into (3.8), the real part of the dominant convective eigenvalue of the Couette
plug flow can be expressed as

−μd = εα

[
D0

β2(εα) C0

+ O(1)

]
, (3.16)

and therefore for small εα

−μd =
εα

β2(εα)
K0 + O(εα), (3.17)

where K0 = D0/C0.
Let us now consider (3.5), which in the plug flow case simplifies to

λd 〈ψd, 1〉 = i 〈ψd, V 〉. Since the dominant convection-enhanced eigenfunctions become
progressively localized at ρ = 1 at increasing Péclet number, solely the behaviour of the
potential V (ρ) near the wall ρ =1 influences the scaling of the dominant convective
eigenvalue. Near ρ = 1 one can expand V (ρ) as

V (ρ) = V0 + V1(1 − ρ) + O(|1 − ρ|2). (3.18)
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Substituting the invariant rescaling (3.11), and making use of (3.18) up to leading
(first) order, the two integrals entering (3.5) can be expressed as

〈ψd, 1〉 = A(εα) β(εα)

∫ ∞

0

(1 − β(εα) ξ ) ψd,i(ξ ) dξ

= A(εα) β(εα) [G0 − β(εα) G1], (3.19)

〈ψd, V 〉 = A(εα) β(εα)

∫ ∞

0

[1 − β(εα) ξ ] [V0 + V1 β(εα) ξ )] dξ

= A(εα) β(εα)
[
V0 G0 + β(εα) (V1 − V0) G1 − β2(εα) V1 G2

]
, (3.20)

where

Gh =

∫ ∞

0

ξh ψd,i(ξ ) dξ = Gh
R + i Gh

I , h = 0, 1, 2. (3.21)

The decomposition into real and imaginary parts of the dominant eigenvalue in (3.5),
leads to a linear system for μd and qd⎛⎝G0

R − β G1
R −G0

R + βG1
I

G0
R − βG1

I G0
R − β G1

R

⎞⎠⎛⎝μd

qd

⎞⎠ =

⎛⎝−V0G
0
I − β(V1 − V0)G

1
I − V1G

0
I + β2V1G

2
I

V0G
0
R + β(V1 − V0)G

1
R + V1G

0
I − β2V1G

2
R

⎞⎠
(3.22)

that yields for −μd:

−μd = β(εα)
V1

(
G0

R G1
I − G0

I G1
R

)(
G0

R

)2
+

(
G0

I

)2
+ O(β2(εα)) = β(εα)K1 + O(β2(εα)). (3.23)

Equating (3.17) and (3.23) up to the leading order, one obtains for large Pe (small
εα)

εαK0

β2(εα)
= β(εα)K1 ⇒ β3(εα) = εα

(
K0

K1

)
, (3.24)

i.e.

β(εα) = K ε1/3
α , (3.25)

where K = (K0/K1)
1/3, which, from (3.18), implies for sufficiently large Pe

−μd =
K0

K
2

ε1/3
α ∼ Pe−1/3. (3.26)

Equation (3.26) corresponds to the scaling observed numerically for the real part of
the dominant convection-enhanced eigenvalue of the Couette plug flow (see figure 5).

4. Advection–diffusion in the creeping Couette flow
This section describes the spectral phenomenology associated with the advection–

diffusion equation for the open Couette flow under creeping conditions, by assuming
the NAD approximation. From the physical point of view, the spectral results obtained
by enforcing NAD approximation are significant solely starting from Pe > Pe∗, where
Pe∗ � 5 × 102, as discussed in § 2.4.

The main difference with respect to the Couette plug flow considered in § 3,
modelling transient mixing in an annular domain, is the presence of a non-uniform
axial velocity profile w(ρ), which vanishes at the solid walls (inner and outer cylinders).
The non-uniform character of the axial velocity profile makes it impossible to
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Figure 7. Real part of the dominant convection-enhanced eigenvalue μd versus Pe for the
Couette flow κ = 0.4, α = 6, Γ = π. Upper curve (and symbols �) refer to Ω =(−1, 1), lower
curve (and symbols �) to Ω = (0, 1). Solid line (a) corresponds to the scaling −μd ∼ constant,
solid line (b) to μd ∼ Pe−1/3, solid line (c) to −μd ∼ Pe−2/3, solid line (d) to the scaling
−μd ∼ Pe−1/2.
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Figure 8. Real part of the dominant convection-enhanced eigenvalue μd versus Pe for the
Couette flow κ = 0.8, α = 6, Γ = π. Upper curve (and symbols �) refer to Ω =(−1, 1), lower
curve (and symbols �) to Ω = (0, 1). Solid line (a) corresponds to the scaling −μd ∼ constant,
solid line (b) to −μd ∼ Pe−1/3, solid line (c) to −μd ∼ Pe−1/4.

transform the stationary advection–diffusion equation for an open flow device into
an equivalent problem for a closed system.

Next, we show that the presence of a non-uniform axial velocity determines an
extremely rich spectral behaviour of the advection–diffusion operator that has no
counterpart in the corresponding closed flow system.

4.1. Asymptotic spectral regimes

Figures 7 and 8 review the behaviour of μd for different geometric and operating
configurations (κ = 0.4, figure 7 and κ =0.8, figure 8, respectively). For almost all
the Péclet values, the dominant eigenvalue of the convection-enhanced spectral
component corresponds to m =1 in (A 10).
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κ Ω γ

0.4 (0, 1) 1/2
0.4 (−1, 1) 1/3
0.8 (0, 1) 1/4
0.8 (−1, 1) 1/3

Table 1. Asymptotic scaling exponent γ entering (4.1) for the different geometric and
operating conditions considered throughout this article.

This is true for all the Couette flow systems considered with the unique exception
of the case κ = 0.8, Ω =(−1, 1). For this flow condition, there is a small window of
Péclet values, Pe ∈ (1885, 2000), for which the dominant eigenvalue of the convection-
enhanced component corresponds to m =2. However, the difference between the real
parts of the dominant eigenvalues of the (m =1) and (m = 2) branches within this
window of Pe values is very small. The maximal difference occurs for Pe � 1950, at
which −μd(m = 1) � 13.93, while −μd(m = 2) � 13.44.

The values of μd depicted in figures 7 and 8 have been obtained by solving
the corresponding generalized eigenvalue problem equation (3.3) for sufficiently large
value of the number of modes, in order to ensure an accurate estimate of the dominant
eigenvalue (details on the numerical solution of the generalized eigenvalue problem
can be found in the Appendix A).

For all the operating conditions considered, the scaling −μd with Pe exhibits a
complex structure characterized by the occurrence of intermediate power law scalings,
and, asymptotically, (i.e. for Pe → ∞) by a power law dependence

−μd ∼ εγ
α ∼ Pe−γ , P e → ∞, (4.1)

where the exponent γ (0 < γ < 1) depends both on the geometry (ratio κ) and on the
operating conditions (i.e. on Ω).

For example, for Ω =(0, 1), the large-gap geometry (κ = 0.4) yields an asymptotic
exponent γ = 1/2, while the same operating conditions on a device with a larger inner
radius (κ = 0.8) yields γ = 1/4.

Conversely, for Ω = (−1, 1), i.e. when the inner and outer cylinders are counter-
rotating with the same absolute value of the angular velocity, the scaling −μd ∼ Pe−1/3

characterizes the asymptotic behaviour of −μd independently of κ .
Table 1 summarizes the values of the asymptotic exponent γ for the cases depicted

in figures 7 and 8. Apart from the asymptotic scaling, the behaviour of the dominant
eigenvalue display a complex structure of intermediate power law scalings. Particularly
interesting is the intermediate behaviour occurring for Ω = (−1, 1), which displays
the scaling −μd ∼ Pe0 that is persistent for almost two decades of the Péclet number.
This is a significant result both from the practical and the theoretical point of view,
since the behaviour −μd ∼ constant is the best possible scenario for mixing that may
arise from the interaction between advection and diffusion, not only in view of the
high values of −μd , which ensure swift axial homogenization of the stationary profile,
but also because of the relative insensitivity of the device response to variations of
the operating conditions (e.g. a change of flow rate or of the species diffusivity). In
the case of closed flows, the independence of the homogenization exponents on Pe

have been observed solely for globally chaotic flows (Giona et al. 2004a; Liu and
Haller 2004a). Section 6 analyses in detail the occurrence of this behaviour. Another
interesting observation is that the scaling of −μd versus Pe is not described by a
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Figure 9. Modulus of the dominant convection-enhanced eigenfunction for κ = 0.4,
Ω =(0, 1) (α =6, Γ = π). The arrows indicate increasing values of Pe. (a) Pe =
2 × 103, 5 × 103, 104, 2 × 104, 5 × 104. (b) Pe = 105, 2 × 105, 5 × 105, 106, 2 × 106, 5 × 106.
(c) Pe = 107, 2 × 107, 5 × 107, 108. (observe that the abscissa range has changed with respect
to a–b). (d ) Invariant rescaling: |ψd,i(ξ )| versus ξ =(ρ − ρ∗)/β(εα). The solid line refers to
Pe = 107, while dots (�), (�), (�) to Pe = 2 × 107, 5 × 107, 108, respectively.

monotonically decreasing function of Pe. This seemingly counter intuitive result has
been also observed in closed micromixers possessing cylindrical symmetry (Gleeson
et al. 2004).

The best mixing performance is achieved for Ω = (−1, 1) in the range of 104 �
Pe � 108, giving rise to values of −μd of one or even two orders of magnitude greater
than that associated with the protocol Ω =(0, 1).

4.2. Eigenfunction localization

The occurrence of several asymptotic regimes characterized by different numerical
values of the exponent γ is a direct consequence of the different localization properties
of the dominant eigenfunctions. This section describes the phenomenological aspects
of localization, while the theoretical interpretation is discussed in §§ 5 and 6.

Consider first the case Ω = (0, 1), for which the potential V (ρ) vanishes at the inner
cylinder. Figure 9(a–c) depicts the modulus of the dominant eigenfunction |ψd(ρ)| for
different values of the Péclet number at κ = 0.4. For intermediate values of Pe, ranging
from Pe = 2×103 up to Pe = 5×104 (figure 9a), the dominant eigenfunctions become
progressively localized close to the inner cylinder. This Péclet range corresponds to
the intermediate scaling (curve c) depicted in figure 7. For higher Pe = (105, 5 × 106)
(figure 9b), a restructuring of the eigenfunction occurs. This Pe-range corresponds to
the plateau in the scaling of −μd versus Pe connecting curve (c) to the asymptotic
scaling (curve d) in figure 7. The eigenfunction moves progressively away from the
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Figure 10. Modulus of the dominant convection-enhanced eigenfunction for κ = 0.8,
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inner cylinder and becomes localized at an internal radial abscissa ρ∗ � 0.518 (a
theoretical prediction of ρ∗ is provided in §§ 5 and 6).

The asymptotic localization behaviour near ρ∗ is depicted in figure 9(c). As in the
case of the Couette plug flow the invariant rescaling in the asymptotic regime fulfils
(3.11). The results are depicted in figure 9(d ), and show an excellent agreement with
(3.11).

The case Ω = (0, 1) for κ = 0.8 is depicted in figure 10. The real part of the dominant
eigenfunction does not show intermediate scaling regimes. Starting from Pe = 104,
the behaviour of −μd progressively sets onto an asymptotic behaviour expressed by
(4.1) with γ = 1/4 (figure 8, curve c). The modulus of the dominant eigenfunction is
depicted in figure 10(a), starting from Pe = 5 × 106 (which is the value of Pe starting
from which the asymptotic scaling of the eigenfunction is fully developed, see figure
8) up to Pe =108. The eigenfunctions are localized at the wall of the inner cylinder,
and satisfy the invariant rescaling (3.11). Eigenfunction invariance is depicted in
figure 10(b).

The properties of the eigenfunctions change dramatically when the inner and the
outer cylinder are counter-rotating, i.e. when Ω =(−1, 1). In this case, the potential
V (ρ) is different from zero at the walls of the flow device, while the axial velocity
w(ρ) vanishes on the inner and outer cylinder.

The modulus of the dominant eigenfunction is depicted in figure 11(a, b) for κ =0.4,
and figure 11(d, e) for κ = 0.8, respectively. Figures 11(a) and 11(d ) refer to Péclet
values corresponding to the spectral plateau depicted in figures 7, 8, corresponding
to the scaling −μd ∼ Pe0. Figures 11(b) and 11(e) refer to higher values of Pe giving
rise to the asymptotic scaling −μd ∼ Pe−1/3, shown in figure 7 and 8 (curve c).

The dominant eigenfunction becomes localized at an inner point ρ∗ of the device,
ρ∗ � 0.672 for κ = 0.4, and ρ∗ � 0.899 for κ = 0.8 (theoretical prediction of the
localization radius is discussed in § 6). However, the transition towards the asymptotic
localization displays a different phenomenology with respect to the case κ =0.4,
Ω = (0, 1), depicted in figure 9.

The intermediate transient regime occurring for Ω = (−1, 1), and characterized by
the scaling −μd ∼ constant, (curves a in figures 7 and 8), already displays eigenfunction
localization towards an internal point close to ρ∗. The transition from intermediate
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Figure 11. Modulus of the dominant convection-enhanced eigenfunction for Ω = (−1, 1)
(α = 6, Γ = π). (a)–(c) κ = 0.4, (d )–(f ) κ = 0.8. (a), (b), (d ), (e) The arrows indicate increasing
values of Pe. (a) Pe =5×103, 104, 2×104, 5×104, 105. (b) Pe =2×105, 5×105, 106, 2×106.
(c) Invariant rescaling |ψd,i(ξ )| versus ξ = (ρ − ρm(εα))/β(εα). The solid line refers to
Pe = 5 × 105, while dots (�), (�), (�) to Pe = 106, 2 × 106, 5 × 106, respectively. (d )
Pe = 105, 2 × 105, 5 × 105. (e) Pe =5 × 106, 107, 2 × 107, 5 × 107. (f ) Invariant rescaling:
|ψd,i(ξ )| versus ξ = (ρ − ρm(εα))/β(εα). The solid line refers to Pe =107, while dots (�), (�),
(�) to Pe = 2 × 107, 5 × 107, 108, respectively.

to asymptotic regimes, corresponding to curve (a) and (b) in figure 8, is a peculiar
phenomenon suggesting the presence of a dynamic instability, the details of which
are described in § 6.

The graph of the eigenfunction modulus depicted in figures 11 (b) and 11(e)
shows that the values of ρ∗ at which the eigenfunction becomes localized in the Pe-
asymptotic regime display a weak dependence on Pe, and it is convenient to use the
notation ρ∗(εα) to indicate explicitly this dependence. The value of ρ∗(εα) oscillates in
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Figure 12. ρ∗ versus Pe for Ω =(−1, 1). Dots are numerical results (�, �) for κ = 0.4, (�, �)
for κ = 0.8. Horizontal lines (solid for κ = 0.4, dashed for κ = 0.8) are the theoretical predictions
(see § 6). Filled symbols (�, �) correspond to the intermediate mixing regime, open symbols
(�, �) to the asymptotic scaling.

a complex way around a well defined mean value (ρ∗ = 0.672 for κ =0.4, ρ∗ =0.899
for κ = 0.8). This phenomenon is depicted in figure 12. In point of fact, these small
fluctuations of the localization abscissa are not due to numerical inaccuracy, but rather
on a peculiar phenomenon controlling the selection of the dominant eigenvalue. This
issue is further addressed in § 6. As in all the cases previously considered, the invariant
rescaling (3.11) applies also in this case, as depicted in figures 11(b) and 11(f ). We
emphasize that in the rescaling of the dominant eigenfunctions onto a single invariant
master curve we have used for ρ∗, the value ρ∗(εα) of the radial abscissa of the mode
of the modulus of the corresponding eigenfunction.

The information deriving from the analysis of the eigenfunction moduli should be
complemented with the analysis of the behaviour of their real and imaginary part.
Figure 13 depicts the real part of the eigenfunctions for all the cases considered in
this section, at a characteristic value of Pe corresponding to the asymptotic scaling
of the corresponding dominant eigenvalue. Since the eigenfunctions are generically
complex-valued, their real part is obviously defined modulo a complex prefactor. The
striking difference between the eigenfunctions for Ω = (0, 1) and for Ω = (−1, 1) is
that while in the first case the structure of the real part has a major single peak with
no oscillations, for Ω =(−1, 1) the real part of the eigenfunctions mimics a complex
wavepacket. This phenomenological difference is associated with different properties
of the phase of the eigenfunction which cannot be entirely understood by considering
exclusively the eigenfunction moduli. A convenient strategy for tackling this problem
is to apply a Bohmian decomposition of the eigenfunctions ψd(ρ) into modulus and
phase. This is developed in § 6.1.

5. Theoretical analysis
This section addresses the analysis of the spectral properties of the open Couette

flow by focusing on the behaviour of the dominant convection-enhanced eigenvalue
for large Pe (§§ 5.1 and 5.2). The starting point for predicting the asymptotic spectral
scaling is the ‘localization ansatz’ expressing the behaviour of the radial localization
abscissa and its dependence on V (ρ) and w(ρ), which is justified in § 6.1.



316 M. Giona, S. Cerbelli and F. Garofalo

–4

0

4

8
(a) (b)

(c) (d)

0.4 0.5 0.6 0.7 0.8 0.9 1.0

ρ

–20

 0

 20

0.4 0.5 0.6 0.7 0.8 0.9 1.0

–5

 0

 5

 10

 15

 20

 25

0.80 0.85 0.90 0.95 1.00
ρ

0.80 0.85 0.90 0.95 1.00
–30

–20

–10

 0

10

20

30

|ψ
dR

(ρ
)|

|ψ
dR

(ρ
)|

Figure 13. Real part of the dominant convection-enhanced eigenfunction. (a) κ = 0.4,
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5.1. Prediction of the asymptotic eigenvalue scaling

The observed asymptotic scaling of the real part of the dominant convection-enhanced
eigenvalue as a function of Pe described in § 4 can be interpreted by means of a
simple ansatz on eigenfunction localization. To introduce this ansatz, it is convenient
to reformulate (3.3) as

λψ(ρ) =
εα

w(ρ)
D2[ψ](ρ) + i Veff (ρ) ψ(ρ). (5.1)

Equation (5.1) can be interpreted as a classical (non-generalized) eigenvalue problem
in the presence of an effective potential

Veff (ρ) =
V (ρ)

w(ρ)
, (5.2)

which is the ratio of the angular to the axial velocity, and of a position dependent
Péclet number Peeff (ρ) given by Peff (ρ) = Pe w(ρ), which is the product of the Péclet
number times the axial velocity. Since the axial velocity vanishes at the cylinder
walls (ρ = κ , and ρ = 1), the effective Péclet number vanishes at the radial endpoints.
Therefore the dimensionless effective diffusivity 1/P eeff (ρ) grows unbounded close to
the inner and outer cylinders. The latter observation is physically evident, since the
axial velocity vanishes at the inner and outer cylinders and, consequently, diffusion
dominates near the solid boundaries.
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From the discussion above, it is intuitive to expect that mixing properties of open
Couette flow devices are controlled by the behaviour of the effective potential Veff (ρ)
and of the effective Péclet number Peff (ρ).

The localization ansatz, that should be so far considered as a conjecture on
the behaviour the dominant convection-enhanced eigenfunctions, can be stated by
considering the properties of the effective potential Veff (ρ). Suppose that Veff (ρ) admits
a local bounded extremal value at ρ1 (local maximum or minimum) or a bounded
absolute extremal value at the boundary ρ = ρ2. Let Veff (ρ) − Veff (ρh) ∼ (ρ − ρh)

ch ,
h = 1, 2 the local expansion of the effective potential close to the two extremal points
ρh (h = 1, 2). The dominant convective eigenfunction becomes localized asymptotically
at the radial abscissa ρ = ρ∗, where ρ∗ ∈ {ρ1, ρ2} corresponding to the highest value
of local nonlinearity exponent ch. If c1 = c2, localization occurs at the radial abscissa
ρh (h = 1, 2) that yields the lowest value of −μd .

Conversely, if the effective potential is a monotonic function of ρ, diverging to
±∞ at the interval boundaries, then the dominant convection-enhanced eigenfunction
becomes localized at an internal radial abscissa ρ∗ corresponding to the local extremal
point of the function

σ (ρ) = w(ρ) V ′
eff (ρ) =

V ′(ρ) w(ρ) − w′(ρ) V (ρ)

w(ρ)
, (5.3)

where V ′
eff (ρ) = dVeff (ρ)/dρ. In point of fact, this result is strictly valid in the

intermediate scaling region, where −μd ∼ Pe0, while asymptotically, i.e. for very
large Pe, it can be justified from kinematic arguments that the localization abscissa
ρ∗ corresponds to the minimum of |V ′

eff (ρ)|. However, in the case of the Couette flow
considered in this article, the minimum of |V ′

eff (ρ)| and the local extremal value of
σ (ρ) are so close to each other that they can be assumed practically coincident. This
means that for this flow system the condition expressed by (5.3) can also be used
to characterize the asymptotic scaling. A theoretical justification of the localization
based on σ (ρ) is developed in § 6.

The first part of this ansatz corresponds to what already observed and discussed
for closed flow systems (Giona et al. 2004b,c). A theoretical justification of the second
part of the localization ansatz is developed in § 6.1.

Before applying this conjecture for deriving the scaling properties of the dominant
convective eigenvalue, let us illustrate it for the specific class of flow protocols
considered throughout the article. Figure 14 depicts the behaviour of Veff (ρ) and σ (ρ)
in these cases.

For κ = 0.4 and Ω = (0, 1) (figures 14a and 14b), Veff (ρ) is bounded close to
ρ = κ , since both V (ρ) and w(ρ) vanish at that point. The effective potential also
admits a local quadratic minimum at an internal point, ρ∗ = 0.518. The localization
conjecture predicts that the dominant convection-enhanced eigenfunction should
become localized asymptotically at ρ∗, and this is exactly what has been observed in
the numerical simulations (figure 9). Consider the case κ = 0.8, Ω = (0, 1) (figure 14e–
f ). The function Veff (ρ) is monotonically increasing with ρ and possesses a bounded
extremal value at ρ = κ . Consequently, the localization ansatz predicts that the
dominant convection-enhanced eigenfunctions become localized at the inner cylinder
radius, as observed in figure 10.

Let us now focus on the rotation condition Ω =(−1, 1), which admits no analogous
for closed flows. For any κ > 0, (and specifically for κ = 0.4 and κ =0.8 depicted in
figure 14c and 14g, respectively), Veff (ρ) is a monotonically increasing function of ρ,
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Figure 14. Veff (ρ) and σ (ρ) for different flow configurations. (a)–(b) κ = 0.4, Ω = (0, 1).
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diverging to −∞ for ρ → κ , and to ∞ for ρ → 1. The localization ansatz in these
cases states that the localization abscissa ρ∗ corresponds to the local extremal value
of σ (ρ) (a local minimum of w(ρ) V ′

eff (ρ) as depicted in figure 14d and 14h). The
local minimum of σ (ρ) occurs for ρ∗ = 0.672 for κ = 0.4, and ρ∗ = 0.899 for κ = 0.8,
in agreement with the numerical simulations (see figure 12).

Although stated in the form of a conjecture, the localization ansatz explains
satisfactorily the occurrence of difference localization points in the open Couette
flow. While the first part of this conjecture (i.e. when Veff (ρ) admits a bounded
extremal value) is equivalent to the analysis developed for closed flows (see e.g. Giona
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κ Ω ρ∗ δ ν γ

0.4 (0, 1) Inner point 2 0 1/2
0.4 (−1, 1) Inner point 1 0 1/3
0.8 (0, 1) κ 1 1 1/4
0.8 (−1, 1) Inner point 1 0 1/3

Table 2. Localization point ρ∗, flow exponents δ and ν, and theoretical prediction for γ based
on (5.5) for the different geometric and operating conditions considered throughout this article.

et al. 2004b,c), the less intuitive part of the conjecture, which is specific of open flow
systems and finds no counterpart in closed flows, is justified in § 6.1.

The details of the calculations for predicting the scaling exponent γ in each flow
condition occurring for the open Couette flow is reported in Appendix B. By using
the same technique applied in Appendix B, it is possible to obtain a general scaling
result. Let ρ∗ be the localization abscissa in the neighbourhood of which w(ρ) and
Veff (ρ) behave to the leading order as

w(ρ) = w0 (ρ−ρ∗)ν +O(|ρ−ρ∗|ν+1), Veff (ρ) = a0+a1 (ρ−ρ∗)δ+O(|ρ−ρ∗|δ+1). (5.4)

The scaling exponent γ entering (4.1) is a function of the exponents ν and δ defined
by (5.4) and reads

γ =
δ

2 + ν + δ
. (5.5)

Table 2 reviews the values of the exponents δ, ν and the prediction for γ deriving
from (5.5) that are in agreement with the numerical observations.

5.2. Spectral phase transitions and mixing regimes

The analysis developed in the previous paragraph for Ω = (0, 1) indicates that the
geometry, and specifically the parameter κ , induces a qualitative change in the spectral
behaviour of the advection–diffusion equation associated with the open Couette flow.
Henceforth we use the wording ‘spectral phase transition’ to indicate a sharp change
in the asymptotic spectral scaling of the dominant eigenvalue at large Pe, which may
occur when one or more geometric and operating parameters are varied.

The typical example of a spectral phase transition occurs for Ω = (0, 1), when the
radius of the inner cylinder is increased. The phenomenology of this phase transition
is qualitatively described by the graphs of Veff (ρ) depicted in figure 14(a, e). For
sufficiently small values of κ below a critical threshold κc (which is estimated below),
Veff (ρ) possesses a local extremal value at an internal radial abscissa ρ∗ >κ . In
this condition, the dominant convection-enhanced eigenvalue scales as −μd ∼ Pe−1/2.
When κ is increased, (e.g. for κ = 0.8) the graph of Veff (ρ) becomes monotonic with
ρ, and the dominant convection-enhanced eigenfunction becomes localized at ρ = κ ,
giving rise to the scaling −μd ∼ Pe−1/4. This suggests that the characteristic function
of this spectral phase transition is the first derivative of Veff (ρ) at ρ = κ ,

G(κ) = lim
ρ→κ

dVeff (ρ)

dρ
. (5.6)

The critical inner cylinder radius κc is therefore given by the value of κ at which
G(κ)|κ = κc

= 0. The function G(κ) attains negative values for κ < κc, and positive values
for κ = κc. Figure 15(a) depicts the behaviour of G(κ) versus κ . Simple algebraic
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Figure 16. Localization of the dominant eigenfunction for values of κ <κc for Ω = (0, 1).
(a) Dominant convective eigenfunction at Pe = 107 for increasing values of κ = 0.1,
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(localized around the asymptotic value ρ∗ =0.530).

manipulations show that the equation G(κ) = 0 simplifies to

1 − κ2 + 4κ2 log κ = 0 (5.7)

from which the value κc = 0.533 can be obtained. Let us analyse the localization
behaviour close to the transition point κc. Figure 15(b) depicts the value of
the localization abscissa ρ∗(κ) as a function of κ , and compares the theoretical
prediction for ρ∗(κ) deriving from the localization ansatz with the numerical results
of eigenfunction localization. The function ρ∗(κ) can be viewed as the order parameter
of this spectral phase transition. At the transition point κc, ρ∗(κ) is continuous but
not differentiable.

The localization properties of the eigenfunctions for κ <κc far from the critical
point are depicted in figure 16(a). More interesting is the spectral behaviour close to
the transition point κc. Figure 17 shows the behaviour of the dominant convection-
enhanced eigenvalues μd as a function of Pe for κ slightly below (κ = 0.5) and
above (κ = 0.6) the transition point. As expected, the dominant eigenvalue scales
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Figure 17. Real part of the dominant convection-enhanced eigenvalue μd versus Pe for the
Couette flow at Ω = (0, 1). Dots (�) refer to κ =0.5 (below the spectral phase transition),
(�) to κ = 0.6 (above the transition). Upper and lower solid lines correspond to the scalings
−μd ∼ Pe−1/4 and −μd ∼ Pe−1/2, respectively.

asymptotically in a different way above and below κc. The relaxation towards the
asymptotic scaling is peculiar for κ = 0.5, and requires further analysis. The Péclet
range Pe = (102, 106) is still characterized by transient spectral phenomena. In the
range Pe = (106, 109), the spectrum undergoes a restructuring, and solely starting
from Pe > 109, the asymptotic scaling is attained. At present, a theory predicting the
critical Péclet value corresponding to the onset of the asymptotic localization regime
is not available.

The phenomenology of this complex relaxation towards the asymptotic regime can
be explained by considering the localization properties of the dominant eigenfunctions,
depicted in figure 16(b). For Pe < 109, the dominant eigenfunction shows a transient
localization at an internal point ρ = 0.643. It is necessary to consider higher values of
Pe > 1010 to observe the asymptotic localization around ρ∗ = 0.530, corresponding to
the local extremal value of Veff (ρ).

This example shows that there are cases where the asymptotic scaling can manifest
itself at very large values of the Peclect number (e.g. Pe ∼ 109), and therefore a careful
attitude must be adopted when analysing the asymptotic spectral properties.

Different types of spectral phase transitions can occur by changing the operating
conditions. For example, one can consider the inner cylinder angular velocity as a
parameter, and study the flow configurations Ω = (ω, 1) where ω ∈ (−ω1, ω1), ω1 > 0.
This corresponds to study the qualitative behaviour of the system when the direction
of the relative motion of the two cylinders is inverted.

For negative values of ω, the situation is similar to the case Ω = (−1, 1), and gives
rise to localized eigenfunction at an inner point ρ∗ corresponding to the local extremal
point of σ (ρ) (according to the localization ansatz). In these conditions, the scaling
exponent is γ = 1/3.

The value ωc = 0 is the critical point. Depending on the value of κ , above ωc the
dominant convective eigenfunctions becomes asymptotically localized either at the
inner cylinder radius, or at an internal point ρ∗, corresponding to the local extremal
point of Veff (ρ). This phenomenon depends on the phase transition discussed above.
Consequently, the exponent γ attains for ω = 0 either the value 1/4 or 1/2. For
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Pe = 105, 106, 5 × 106. The dashed line (a) is the graph of the effective potential Veff (ρ).
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dominant convection-enhanced eigenvalue μd versus Pe for Ω = (0.3, 1) for κ = 0.4 (�), and
for κ =0.8 (�). The solid line corresponds to the scaling −μd ∼ Pe−1/2 predicted by the
localization theory.

positive ω, both the inner and the outer cylinders are set in motion. The resulting
effective potential becomes singular for ρ = κ , and ρ = 1, diverging to ∞.

Therefore, the graph of Veff (ρ) displays a local minimum at an inner point ρ∗, as
depicted in figure 18(a). The dominant convection-enhanced eigenfunction becomes
asymptotically localized at ρ = ρ∗ and, from what discussed in § 5.1 (this case is
analogous to the condition κ = 0.4, Ω = (0, 1)), the scaling exponent γ should attain
the value γ = 1/2. Figure 18(b) shows the scaling of μd versus Pe for ω = 0.3, and
for two different values of κ =0.4, 0.8. Numerical results are in agreement with the
localization theory, and this is a further confirmation of the localization ansatz.

6. Fine spectral structure for the protocol Ω = (−1, 1)

In this section, a detailed analysis of the spectral properties associated with
flow protocols characterized by a counter-rotating cylinder motion is developed.
Specifically, the case Ω = (−1, 1) is considered.

6.1. Bohmian decomposition and localization

The localization ansatz predicts different localization properties depending on whether
the effective potential Veff (ρ) possesses bounded extrema or not. In the first
case, the localization behaviour of the dominant convection-enhanced eigenfunction
is analogous to that associated with closed bounded autonomous flows. Besides, in the
case of a monotonic potential Veff (ρ), diverging at the boundary points, the analysis
involves the function σ (ρ) defined by (5.3), the physical meaning of which is far from
being intuitive.

To explain this part of the localization conjecture, consider (3.3). For large Pe, the
diagonal term −εαm

2ψ(ρ)/ρ2 can be neglected so that (3.3) simplifies to

λw(ρ) ψ(ρ) =
εα

ρ

d

dρ

(
ρ

dψ(ρ)

dρ

)
+ i V (ρ) ψ(ρ). (6.1)
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Let us introduce the factorization of the eigenfunction in terms of modulus h(ρ) and
phase S(ρ),

ψ(ρ) = h(ρ)ei S(ρ). (6.2)

The decomposition equation (6.2) is identical to that used by Bohm for deriving
his formulation of quantum mechanics (Bohm 1952), and for this reason it will be
referred to as the Bohmian decomposition.

Substituting (6.2) into (6.1), and letting λ= μ + iq , a system of two differential
equations for h(ρ) and S(ρ) is obtained

μ w(ρ) h(ρ) =
εα

ρ
[(ρ h′(ρ))′ − ρ h(ρ)(S ′(ρ))2], (6.3)

q w(ρ) h(ρ) =
εα

ρ
[h(ρ) S ′(ρ) + 2 ρ h′(ρ) vS ′(ρ) + ρ h(ρ) S ′′(ρ)] + V (ρ) h(ρ). (6.4)

The terms entering (6.4) can be rearranged in the form

h′(ρ) =

[
qw(ρ) − V (ρ)

2εα S ′(ρ)
− S ′′(ρ)

2S ′(ρ)
− 1

2ρ

]
h(ρ), (6.5)

which can be integrated to give the formal solution

h(ρ) =
h0√

ρ |S ′(ρ)|
exp

[∫ ρ qw(ξ ) − V (ξ )

2εα S ′(ξ )
dξ

]
, (6.6)

where h0 is a constant. Let us introduce a simplifying assumption, namely the constant
phase variation approximation. This means that, close to the localization point, the
phase derivative s(ρ) = S ′(ρ) is a slow varying function of ρ that can be approximated
by a constant s0 
= 0,

s(ρ) = S ′(ρ) = s0 = constant. (6.7)

Equation (6.7) is consistent with the numerical results at Ω = (−1, 1). Figure 19(a)
depicts the graph of the phase derivative s(ρ) versus ρ of the dominant convection-
enhanced eigenfunctions for κ = 0.4.

As can be observed, close to ρ = ρ∗ (marked by a dashed vertical line), s(ρ) = S ′(ρ)
is constant, and remains practically constant in the interval, centred at ρ∗, in which
h(ρ) is significantly different from zero (h(ρ) > 10−8 h(ρ∗)). This gives rise to a phase
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contribution ei S(ρ) � ei s0ρ which is an almost perfect sinusoidal function in the region
where h(ρ) is different from zero (figure 19b).

With the aid of (6.7), (6.6) simplifies to

h(ρ) =
h0√
ρ |s0|

exp

{
1

2s0εα

[
q

∫ ρ

ρ∗
w(ξ )dξ −

∫ ρ

ρ∗
V (ξ )dξ

]}
=

h0√
ρ |s0|

exp

[
1

2s0εα

Φ(ρ, ρ∗)

]
.(6.8)

Neglecting the ρ−1/2 dependence with respect to the exponential, the extremal point
of h(ρ) corresponds to Φ(ρ, ρ∗)|ρ = ρ∗ =0. This condition can be made explicit to give
qw(ρ∗)−V (ρ∗) = 0, which implies that the imaginary part of the eigenvalue q is given
by

q =
V (ρ∗)

w(ρ∗)
. (6.9)

Equation (6.9) is consistent with (3.9) for a localized eigenfunction at ρ = ρ∗. It follows
from (6.9) that Φ(ρ, ρ∗) can be expressed as

Φ(ρ, ρ∗) =
V (ρ∗)

w(ρ∗)

∫ ρ

ρ∗
w(ξ ) dξ −

∫ ρ

ρ∗
V (ξ ) dξ . (6.10)

Let us expand Φ(ρ, ρ∗) in Taylor series of ρ at ρ∗. Since Φ(ρ∗, ρ∗) = 0,
Φ ′(ρ, ρ∗)|ρ = ρ∗ = 0, one obtains

Φ(ρ, ρ∗) = −1

2
σ (ρ∗)(ρ − ρ∗)2 − 1

6
σ ′(ρ∗)(ρ − ρ∗)3 + O(|ρ − ρ∗|4), (6.11)

where the function σ (ρ) is defined by (5.3). In order to ensure that that h(ρ) < h(ρ∗),
the function Φ(ρ, ρ∗) should be locally quadratic and even when expressed in terms
of ρ − ρ∗ in an interval centred at ρ∗. This implies

σ ′(ρ)|ρ=ρ∗ = 0, (6.12)

which is the claim of the localization ansatz stated in § 5.1. It is possible to provide
another derivation of (6.12). From (6.5), neglecting the term 1/2ρ, assuming the
constant phase-variation approximation, and expanding w(ρ) and V (ρ) in power
series, it follows that

h′(ρ)/h(ρ) � −(1/2εαs0)[V
′(ρ∗)−V (ρ∗) w′(ρ∗)/w(ρ∗)](ρ−ρ∗)+O(|ρ−ρ∗|2). (6.13)

The localization abscissa that provides the greatest dominant eigenvalue corresponds
to the value of ρ∗ for which the term between square parentheses is minimum, which
corresponds to condition (6.12).

The validity of (6.11), (6.12) is further confirmed by observing that the profile of
the dominant convection-enhanced eigenfunction is strictly Gaussian for Ω = (−1, 1),
as depicted in figure 20.

The analysis developed above provides a justification of the second statement of
the localization ansatz when Veff (ρ) is monotonic and unbounded at the walls. It is
useful to point out that the validity of (6.12) is based on the assumption of constant
phase variation, close to the localization point. While this assumption applies for
Ω = (−1, 1) (as demonstrated by the numerical simulations), i.e. when Veff (ρ) is a
monotonic function of its argument, the constant phase variation approximation fails
for Ω = (0, 1), and this is the reason why (6.12) cannot be taken as the mathematical
formulation of the localization ansatz in these cases.
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Figure 21. Real part of the dominant eigenvalue as a function of the Péclet number for
α = 6, Γ = π, Ω = (−1, 1). The arrow indicates increasing values of κ =0.4, 0.6, 0.8.

6.2. Global spectral structure and selection rules

One of the most peculiar features of the Couette flow at Ω = (−1, 1) is the occurrence,
for intermediate Péclet values (spanning more than two decades), of a plateau in the
graph of −μd versus Pe, at which the real part of dominant convection-enhanced
eigenvalue attains substantially a constant value, as depicted in figure 21 for several
values of κ . The condition −μd ∼ Pe0 is optimal for mixing, and has been observed
for closed flows giving rise to globally chaotic kinematics (Toussaint et al. 1995;
Cerbelli et al. 2004; Liu and Haller 2004a ,b). In this section, we investigate further
the spectral properties in this intermediate region of Péclet numbers.
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α = 6, Γ = π, Ω =(−1, 1). (a) κ = 0.4, (b) κ = 0.6, (c) κ = 0.8.

Let us consider in more detail the behaviour of −μd depicted in figure 21 in the
Péclet range (5×103, 5×105). Even though −μd is practically constant, complex, small-
amplitude oscillations, and the occurrence of local cusps characterize the behaviour
of −μd around the constant mean value. The origin of this complex behaviour
(which is not due to numerics, but it is a property of the system) can be interpreted
by considering the whole eigenvalue spectrum (for m =1) the real part of which is
depicted in figure 22(a–c) for κ = 0.4, 0.6, 0.8, respectively.

The eigenvalue spectrum, parametrized with respect to Pe, can be considered as the
union of a countable family of branches {bh(Pe)}. A natural ordering amongst the
spectral branches can be defined by considering the behaviour at low Péclet values
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(Pe < 1), i.e. in the diffusive regime. Indeed, for Pe < 1,

bh(Pe) � μ
(0)
h εα , h = 1, 2, . . . , (6.14)

where μ
(0)
1 > μ

(0)
2 > · · · μ(0)

n > · · ·, and μ
(0)
h < 0, h = 1, 2, . . . are the diffusive eigenvalues

solution of the Hermitian eigenvalue problem D2[ψ](ρ) = μ(0)w(ρ) ψ(ρ).
Each branch is the graph of a smooth function of Pe. At low Péclet values, the

dominant convective eigenfunctions belong, by definition, to the first spectral branch
b1(Pe). However, as Pe increases, the graphs of the real part of different spectral
branches may intersect each other, giving rise to an exchange of dominance. These
intersections give rise to the ‘selection rule’ [h → k] with h<k. This means that there
exists a value Pe∗ such that for Pe < Pe∗, μd(Pe) = �[bh(Pe)], while for Pe >Pe∗,
μd(Pe) = �[bk(Pe)]. Here �[b] indicates the real part of the complex number b.
Therefore, at Pe = Pe∗ the real parts of the h and k branches cross each other, and
consequently an exchange of dominance occurs between the two crossing branches.

The symbol [h → k] indicates the exchange of dominance occurring at some Pe∗.
It is also clear the wording ‘selection rule’ to indicate this phenomenon: the dominant
convection-enhanced eigenvalue is ‘selected’ by the actual Péclet value amongst the
different spectral branches which are ordered according to their diffusive behaviour
at low Pe.

Consider the spectral plot of the real part of the eigenvalues depicted in figure 22.
For κ = 0.4, figure 22(a), no exchange of dominance between spectral branches is
observed in the Péclet range considered, although for Pe � 102 the first and second
branches pass next to each other. The selection rule for this situation is simply [1]
indicating that the first branch is dominating for all Pe values considered (i.e. up to
Pe = 105).

For κ = 0.6 figure 22(b), several crossings between the real parts of the eigenvalue
branches occur. The first four crossings are marked with an arrow in figure 22(b).
The first crossing occurs at Pe � 6 × 102 between the first and the third branch,
subsequently the third branch looses dominance and the fourth prevails. The exchange
of dominance involves several other branches for increasing values of Pe so that the
selection rule observed is of the form [1 → 3 → 4 → 6 → 9 → 11 → · · ·]. More
regular is the exchange of dominance occurring for κ = 0.8, figure 22(c), which is
characterized by the following selection rule, [1 → 3 → 5 → 7 → 9 → 11 → · · ·].

It is important to point out that the analysis of the selection rule presented in this
section is limited to the first few spectral crossings. Indeed, there is a first, partial,
numerical evidence that the selection rule may be countable, i.e. that the crossings of
the real part of the eigenvalues, which determine spectral dominant, form a countable
cascade that persists for large Pe. This observation would explain the small amplitude
oscillations observed in the localization abscissa around the mean value ρ∗ predicted
by the localization ansatz.

In the case of a monotonic unbounded potential, the phenomenological observation
and the theoretical prediction which indicate the localization of the dominant
eigenfunction at an internal point which minimizes the function σ (ρ) must be regarded
as a property stemming from the collective behaviour of eigenvalue branches more
than a true asymptotic property of single branches of the spectrum.

The mathematical interpretation of the occurrence of difference selection patterns
as κ increases is beyond the scope of the article, yet it represents an intriguing
mathematical problem falling somewhere in between bifurcation, operator and
number theory.
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7. Practical relevance of the spectral approach

7.1. Dimensionless groups and rescaling

Consider (2.11) for given values of α = α1, Γ = Γ1 and Pe, and let φ(1)(ξ, x⊥; α1, Γ1, P e)
be its solution for a given inlet condition φ0(x⊥). Let φ(2)(ζ, x⊥, α2, Γ2, P e) be the
solution of the same equation for α = α2, Γ = Γ2 and Pe for the same inlet condition,
and for the same operating conditions as regards both geometry (i.e. κ) and the
rotation parameter Ω , i.e.

w(ρ)
∂φ(2)

∂ζ
= − Γ2α2u(ρ)

∂φ(2)

∂θ
+

α2
2

Pe

[
1

ρ

∂

∂ρ

(
ρ

∂φ(2)

∂ρ

)
+

1

ρ2

∂2φ(2)

∂θ2

]
. (7.1)

By multiplying left and right-hand side of (7.1) by (α1Γ1/α2Γ2), and defining

ζ̃ =
α2Γ2

α1Γ1

ζ , P̃ e = Pe
α1Γ1

α2Γ2

, (7.2)

one obtains that

φ(2) (ζ, x⊥, α2, Γ2, P e) = φ(1)
(
ζ̃ , x⊥, α1, Γ1, P̃ e

)
. (7.3)

Equation (7.3) indicates that the solution of the advection–diffusion equation for the
Couette flow for given values of the aspect and velocity ratios α2, Γ2, respectively, is
equivalent to the solution of same boundary-value problem in a Couette flow with
aspect and velocity ratios α1, Γ1, by rescaling the axial coordinate and the Péclet
number according with (7.2). This means that the results obtained for a single set of
aspect and velocity ratios is fully representative of all the possible Couette flows in
which both α and Γ vary arbitrarily. For Γ1 = Γ2, if α2 � α1 then the effective Péclet

number P̃ e is smaller (i.e. by a factor α1/α2) than Pe.
A similar property applies for the spectral structure. Let {λ(1)(Pe)} and {ψ (1)(ρ, P e)}

be the eigenvalue and eigenfunction spectra for α =α1, Γ = Γ1 for the Couette flow
in the NAD approximation, parametrized with respect to the Péclet number. The
eigenvalue and eigenfunction spectra {λ(2)(Pe)} and {ψ (2)(ρ, P e)} associated with a
different set of aspect and velocity ratios α2 and Γ2 are simply given by

λ(2)(Pe) =
α2Γ2

α1Γ1

λ(1)
(
P̃ e

)
, ψ (2)(ρ, P e) = ψ (1)

(
ρ, P̃ e

)
. (7.4)

A further observation, which is worth discussing, is related to the definition of
the Péclet number. The Péclet number is defined as the ratio of the characteristic
time for diffusion to the characteristic time for advection. Throughout the article
we have used the definition Pe = WLz/D. The characteristic time for advection
in an open flow tubular device is naturally associated with the axial propagation
tadv = Lz/W . For the characteristic diffusion time it is possible to choose either
tdiff = L2

z/D or tdiff = R2
out (1 − κ2)/D, since the system admits two characteristic length

scales. Therefore, it is possible to introduce an alternative definition of the Péclet
number, denoted with the symbol pe, with respect to the characteristic time scales of
cross-sectional diffusion

pe =
R2

out (1 − κ2)

α2
Pe. (7.5)

For example, if α = 6, κ =0.8, then pe =10−2 Pe i.e. pe is a hundred times smaller
that the Péclet number Pe defined with respect to tdiff = L2

z/D. Alternatively, one can
define a cross-sectional Péclet number Pe⊥ as Pe⊥ =URout/D, which can be useful
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for simplifying some analyses, as discussed in the next paragraph. This observation
on the different possible definitions of the Péclet number is relevant whenever one
analyses numerical findings and experimental results obtained by different authors.

7.2. Physical significance of the dominant eigenvalue in finite-length devices

The spectral properties of the advection–diffusion operator can be used to describe
the asymptotic behaviour of a scalar field for large values of the axial coordinate. It
is therefore interesting to investigate the practical relevance of the spectral results for
predicting the response of an open Couette flow device of finite length Lz.

Before addressing this issue, let us reformulate the advection–diffusion equation in
the most convenient dimensionless setting. Consider (2.11), and define

ξ = α Γ ζ , P eo =
PeΓ

α
=

URout

D . (7.6)

Making use of the new dimensionless variable ξ , which is no longer bounded by 1,
but attains values in the range [0, α Γ ] depending on the aspect and velocity ratios α

and Γ , (2.11) becomes

w(ρ)
∂φ

∂ξ
= −u(ρ)

∂φ

∂θ
+

1

Peo

[
1

ρ

∂

∂ρ

(
ρ

∂φ

∂ρ

)
+

1

ρ2

∂2φ

∂θ2

]
, (7.7)

which is suitable for a general comparison of the spectral results with the performance

of a finite-length Couette flow device. Let λ̃ = λ/αΓ = ν + iq̃ be the eigenvalues
associated with normalized (7.7).

As a reference quantity we consider the weighted cross-sectional L2-norm
Qi(ξ ) = [

∫
S⊥

w(ρ) (φ(x⊥, ξ ) − φ)2 dx⊥]1/2, where φ is the cross-sectional average, and

compare the axial decay of Qi(ξ ) with the exponential scaling Qas(ξ ) = Ce−νd ξ

associated with the dominant convective eigenvalue. The constant C is a parameter
that can be obtained by fitting the exponential asymptotic decay of Qi(ξ ). The inlet
condition φin(ρ, θ) is the same used in § 2.4.

The comparison of Qi(ξ ) and Qas(ξ ) is depicted in figure 23, for two different
values of Peo equal to 5.24 × 102 (figure 23a) and 5.24 × 104 (figure 23b) for several
flow conditions. At intermediate values of Peo � 5 × 102 (figure 23a), the dominant
convective scaling is representative for the advection–diffusion dynamics starting from
values of ξ � 10. As Peo increases, the asymptotic exponential scaling sets in for higher
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Figure 24. ξa versus Peo for several open Couette flows. (�) κ = 0.4, Ω = (0, 1), (�)
κ = 0.4, Ω = (−1, 1), (�) κ = 0.8, Ω = (0, 1), (�) κ = 0.8, Ω = (−1, 1). The solid horizontal
line corresponds to ζ = 1 for α = 6, Γ = π.

values of ξ , and the assessment of the asymptotic exponential scaling becomes more
dependent on the operating conditions (compare the cases κ = 0.4, Ω = (0, 1) and
κ = 0.8, Ω = (−1, 1) in figure 23 b).

A quantitative indicator of the setting of the asymptotic conditions can be
formulated by introducing a critical asymptotic abscissa ξa , defined as the lower
value of ξ for which |Qi(ξ ) − Qas(ξ )| < η, for ξ > ξa , where η is a small parameter.
We choose η = 10−2. Given ξa , it is possible to establish the values of the aspect
and velocity ratios α and Γ at which the asymptotic exponential scaling becomes
physically relevant in a finite-length device.

Recalling the definition of the normalized abscissa ξ equation (7.6), and assuming
that the assessment of the asymptotic scaling sets in at the outlet of the device, one
obtains ξa = (α Γ ζ )a|ζ =1. Given Γ and ξa for the specific operating conditions, one
can recover the minimum aspect ratio αa = ξa/Γ , starting from which the asymptotic
decay and the dominant eigenfunction control the structure of the outlet concentration
profile. An analogous result can be obtained by fixing α and varying Γ .

Figure 24 shows the value of the critical asymptotic abscissa ξa for the four
operating conditions analysed throughout the article as a function of Peo. The value
of ξa increases monotonically with Pe and is higher for smaller internal radii, and
when the inner cylinder is static Ω = (0, 1). It is possible to use the data depicted in
figure 24 in order to determine the critical value of Peo, for fixed values of α and Γ .
For example, consider α = 6, Γ = π, and draw the horizontal line ξ ∗ = αΓ (depicted in
figure 24). All the values of Peo such that ξa(Peo) < ξ ∗ corresponds to flow conditions
for which the asymptotic scaling rapidly sets in within the flow device.

To give an example, figure 25 shows the spatial structure of the (normalized)
concentration profile at θ = π/3 for α =6, Γ = π, κ = 0.8, Ω = (−1, 1) for the same
inlet condition used for the simulations depicted in figure 23, for values of Peo

slightly lower than (figure 25a), and slightly above (figure 25b) the value Pe∗
o , defined

by ξa(Pe∗
o) =αΓ . In both cases, the outlet profile converges rapidly towards a spatial

pattern close to the profile of the dominant convection-enhanced eigenfunction (not
shown for the sake of brevity). This example indicates that the criterion chosen for
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Figure 25. Normalized spatial profile of the concentration φ along a Couette channel κ = 0.8
(α = 6, Γ = π), Ω = (−1, 1) as a function of ρ and ζ at θ = π/3 starting from a segregated inlet.
(a) Peo = 5.24 × 103. (b) Peo = 5.24 × 104.

ξa is very strict for assessing the achievement of asymptotic conditions at the outlet
section.

As a final comment, it is worth observing that the range of Péclet numbers, aspect
ratios, and operating conditions associated with realistic microflow devices gives
rise to values of Peo < 105 , and values of the group (αΓ ) in the range [100, 102]
(Nguyen & Wu 2005; Nguyen & Wereley 2006), which correspond to the ranges of
values considered in figure 25.

8. Concluding remarks
In this article we studied the mixing properties of a typical, physically realizable

open flow system, the open Couette flow under creeping conditions. The NAD
approximation, which can be assumed valid for Pe >Pe∗ (where Pe∗ � 5 × 102 for
α = 6, Γ = π) permits to approach the characterization of mixing regimes in the form
of a generalized eigenvalue problem. The spectral approach provides a way to charac-
terize mixing in finite-length devices provided that the aspect ratio is sufficiently large.

The open Couette flow exhibits a rich spectral behaviour which depends on the
geometry (i.e. on the ratio κ of the two cylinder radii) and on the parameter Ω

expressing the relative rotation of the inner and outer cylinders. For Ω = (0, 1), the
asymptotic evolution of passive scalar fields displays a spectral phase-transition which
is controlled by the geometric parameter κ . The spectral phase transition influences the
localization abscissa ρ∗(κ) of the dominant eigenfunctions and the scaling exponent γ .
This transition is continuous with respect to the order parameter ρ∗(κ), but displays
a discontinuity in the scaling exponent γ which attains the value γ = 1/2 for κ <κc

and γ = 1/4 for κ >κc.
The properties of the asymptotic mixing regimes depend on the form of the

effective potential Veff (ρ) and of the dimensionless axial velocity w(ρ). The localization
ansatz formulated in § 5 provides an explanation of the localization properties of the
eigenfunctions, and has been justified analytically in the case Veff (ρ) is a monotonic
function of its argument, diverging at the solid walls. The use of norm equalities (3.5),
(3.8) and eigenfunction invariance (3.11) is a simple and powerful tool to predict the
scaling exponent γ for large Péclet values.
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The rotation condition Ω = (−1, 1) is particularly interesting both from the
theoretical and the practical point of view. The spectral structure of the advection–
diffusion operator for Ω =(−1, 1) is characterized by the occurrence of four regimes
as Pe increases: (i) a diffusional regime controlled by the action of the Laplacian
operator along the angular coordinate θ , (ii) a Neumann regime which can be viewed
as a perturbation of the uniform conditions, (iii) an intermediate regime at which the
real part of the eigenvalue is practically independent of Pe and (iv) an asymptotic
regime characterized by the eigenvalue scaling −μd ∼ Pe−1/3.

The intermediate and asymptotic regimes unveils a complex spectral structure
characterized by the interaction between spectral branches giving rise to branch
crossing and exchange of dominance. The phenomenon of crossing of the real parts
associated with single spectral branches crossing is, to the best of our knowledge,
a new spectral phenomenon in connection with non-Hermitian operators of fluid
dynamic interest.

The region of intermediate Péclet values is also interesting for practical purposes.
The almost constant scaling of −μd versus Pe corresponds to optimal mixing
conditions. The range of Péclet values corresponding to these optimal conditions
spans more that two decades (two decades in Pe means that the same decay exponent
−μd characterizes the length scale of homogenization for stationary mixing of small
organic molecules, such as small vitamins and that of large globular proteins), and
corresponds to the typical range of operation of micromixing systems (Nguyen & Wu
2005; Nguyen & Wereley 2006).

It is important to point out that the rich spectral behaviour characterizing the
open Couette flow is intrinsically related to the interplay between the angular
and axial components of the velocity field and diffusion. For w(ρ) = 1, i.e. in the
plug flow case, none of spectral phenomena occurs, and the system behaves as
an equivalent closed system. The presence of a non-uniform axial profile w(ρ),
which physically corresponds to a laminar open flow in the presence of no-slip
boundary conditions, is the ultimate cause of the rich spectral properties found in this
system.

To sum up, the case study of the open Couette flow developed in this article
represents, to the best of our knowledge, one of the first systematic analyses of
mixing in an open flow device, and indicates that the open Couette system can be
considered as a prototypical example of a continuous mixer operating mixer in the
laminar regime associated with non-chaotic kinematics. The topics covered in this
article span all the main properties of this system. Minor, yet not less important,
issues will be object of future investigation. For instance, a problem that has not been
addressed is the spectral invariance as a function of Pe, which characterizes the plug
flow case (see figure 4).

This article focused on the stationary mixing properties of the Couette flow system.
Future work will address its transient (dynamic) properties and the spectral properties
of other prototypical models of open microflow devices, which can be tackled with
the same techniques used in the present article. Although the approach followed in
this article is suited for simple flows, and cannot be extended straightforwardly to
time periodic velocity fields giving rise to partially chaotic kinematics, localization
concepts could be used for attempting a quantitative prediction of the mixing regimes
and homogenization exponents also for partially chaotic flows characterized by the
occurrence of regions of kinematic regular motion, intermingled with invariant chaotic
ergodic subsets (Giona et al. 2004a).
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Appendix A. Simulation details
Let us first consider the NAD approximation. For fixed m, the solution of (3.2) can

be approached by means of a Galerkin expansion with respect to a basis of square
summable function {cn(ρ)}∞

n=0 in the interval (κ, 1), and satisfying the Neumann
boundary conditions at ρ = κ, 1, i.e. dcn(ρ)/dρ|ρ=κ,1 = 0,

φm(ζ, ρ) =

∞∑
n=0

φm,n(ζ ) cn(ρ). (A 1)

Specifically, we chose the cosine basis

cn(ρ) = cos

[
nπ

(ρ − κ)

(1 − κ)

]
, n = 0, 1, . . . , (A 2)

which is orthogonal in (κ, 1), i.e.
∫ 1

κ
cn(ρ) ck(ρ) dρ = σ 2

n δn,k , where δn,k are the Kronecker
symbols and σ0 = (1 − κ), σn = (1 − κ)/2, n= 1, 2, . . .. For fixed m, let us truncate the
expansion equation (A 1) up to N+1 modes, i.e. n= 0, . . . , N . Let φ = (φm,0, . . . , φm,N )T

be the vector of the truncated Fourier coefficients. Equation (3.2) can be recast in
matrix form for the coefficient vector φ as

B
∂φ

∂ζ
= −iAφ + εαCφ = Mεα

φ, (A 3)

where the imaginary matrix iA expresses the action of the cross-sectional advection
(A= (An,k)), B =(Bn,k) the influence of the axial flow, and εαC the action of cross-
sectional diffusion (C= (Cn,k)):

An,k = mΓ α

∫ 1

κ

u(ρ) cn(ρ) ck(ρ) dρ , Bn,k =

∫ 1

κ

w(ρ) cn(ρ) ck(ρ) dρ, (A 4)

Cn,k =

[ ∫ 1

κ

cn(ρ)
1

ρ

d

dρ

(
ρ

dck(ρ)

dρ

)
dρ − m2

∫ 1

κ

1

ρ2
cn(ρ) ck(ρ) dρ

]
. (A 5)

The numerical issues associated with (A 3) refer to the simulation of (A 3) and to
the estimate of its spectral (eigenvalue/eigenvector) properties. Let us discuss these
two aspects separately.

The numerical simulation of (A 3) is performed by applying an implicit finite-
difference scheme along the ζ -coordinate. Let {ζi} be an equally spaced grid along
the ζ coordinate, ζi+1 − ζi = �ζ , and let φζi

be the value of the vector-valued function
φ at ζ = ζi . Discretizing (A 3) via an implicit finite-difference scheme, one obtains
Bφζi+�ζ − Bφζi

=Mεα
�ζ φζi+�ζ , from which it follows that

φζi+�ζ =
(
B − �ζ Mεα

)−1
B φζi

. (A 6)

The numerical scheme equation (A 6) applies to the NAD approximation starting
from the value of the vector-valued function φζ0 = 0 at the inlet.

In the general case, i.e. when axial diffusion is accounted for, the solution of the
complete equation (2.11) can be easily obtained by adopting a relaxation method
applied to an operator-splitting algorithm, in which first the model is solved in the
absence of axial diffusion for a given time step, and subsequently, a pure diffusion
equation along the axial direction is advanced for the same time-step.

Let us consider these two steps separately. The first step in the operator-splitting
strategy involves the NAD approximation. In matrix form, the time-dependent
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formulation of the NAD approximation reads

∂φ

∂τ
+ B

∂φ

∂ζ
= Mεα

φ, (A 7)

where the dimensionless time τ is τ = tW/Lz. Let φτ
ζi

be the discretized vector-valued
function of the Fourier coefficients at the axial position ζi and time τ . Equation (A 7)
can been approached numerically by means of an implicit algorithm:

φ̃
τ+�τ

ζi+�ζ =
[
I − �τ Mεα

]−1 [
φτ

ζi+�ζ + δB
(
φτ

ζi+�ζ − φτ
ζi

)]
, (A 8)

where δ =�τ/�ζ < 1 (δ = 0.1). For a fixed �τ , the second step of the algorithm

involves pure diffusion along the axial coordinate. Letting φ̂
τ

ζi
= φ̃

τ+�τ

ζi
be the starting

concentration field obtained at the previous step, the vector-valued function expressing
the concentration field at time t+�τ is obtained by solving explicitly the pure diffusion
equation

φ̂
τ+hτ

ζi
= φ̂

τ

ζi
+

hτ

P e(�ζ )2

(
φ̂

τ

ζi+�ζ + φ̂
τ

ζi−�ζ − 2 φ̂
τ

ζi

)
(A 9)

for a time interval equal to �τ . Here hτ is the time interval for the integration of the
diffusive step, which fulfils the stability constraint hτ < 0.5Pe(�ζ )2. Since, in general,
hτ <�τ , this implies that (A 9) is iterated Nd-times where Nd =�τ/hτ (in practice hτ

is chosen to fulfil the stability constraint, and such that the ratio �τ/hτ returns an

integer). The value of the coefficient vector at time τ + �τ is thus φτ+�τ
ζi

= φ̂
τ+Ndhτ

ζi
.

This operator-splitting procedure is iterated until stationary conditions are reached.
The discretized solution of the advection–diffusion equation depends on the number

of modes (2M +1, i.e. |m| � M) along θ , and ρ (which are N +1, i.e. n= 0, 1, . . . , N),
and on the step size �ζ along the axial coordinate. The choice of the appropriate
values for these quantities (i.e. M , N and �ζ ) for a fixed accuracy depends on the
value of the Péclet number. In the simulations, the values for M , N and �ζ have
been selected according to a heuristic (ex-post) criterion, as the values for which the
solutions were close (according to a prescribed accuracy) to the solutions obtained
by doubling the modes (i.e. taking 2M , and 2N) and reducing by half the axial step
size (i.e. taking �ζ/2). In practice, M, N = 30, 60 and �ζ = 10−3 for Pe � 103, while
M, N =120 up to 480 (depending on the operating conditions), and �ζ = 10−4 for
Pe � 106.

As it regards spectral analysis, the spectrum of the advection–diffusion operator in
the NAD approximation (3.2) is defined by the equation

λw(ρ) ψ(ρ) = −imΓ αu(ρ) ψ(ρ) + εα

[
1

ρ

∂

∂ρ

(
ρ

∂ψ(ρ)

∂ρ

)
− m2

ρ2
ψ(ρ)

]
, m ∈ �,

(A 10)
where λ ∈ � is the eigenvalue and ψ the corresponding eigenfunction.

Numerically, this problem trasforms into a generalized eigenvalue problem
associated with (A 3):

λB ψ = Mεα
ψ . (A 11)

Equation (A 11) has been solved by applying two different routines: the QR
algorithm to the matrix B−1 Mεα

by first reducing this matrix into an upper Hessemberg
form, and the EISPACK routine rgg which approaches directly the generalized
eigenvalue problem. For fixed m, the truncated modal representation (A 11) depends
on N , i.e. on the number (N + 1) of radial modes. The appropriate choice of N
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Figure 26. Real part of the dominant eigenvalue μd versus Pe for the Couette flow κ = 0.4,
Ω = (−1, 1). The arrow indicates increasing modal resolution in the numerical truncation,
starting from N = 30 (�), N = 60 (�), N = 120 (�), N = 220 (�), up to N = 400 (�).

depends on the Pe value, so that the value of N has be chosen case by case in order
to ensure a prescribed accuracy.

To give an example, figure 26 depicts the behaviour of the real part μd (λd = μd+iqd)
of dominant eigenvalue as a function of Pe for m =1 for the Couette flow κ =0.4,
Ω = (−1, 1), i.e. when the two cylinders counter-rotate, for different truncations of the
modal expansion. While for Pe � 104, N =30 is fully sufficient to obtain a reliable
numerical result, at least N = 400 modes are required for Pe � 107. While the detailed
analysis of the scaling of μd with Pe is addressed in the main body of the article,
it can be observed that truncation effects, when the modal resolution is insufficient,
appear as a spurious diffusional scaling −μd ∼ Pe−1 (the family of parallel lines in
figure 26 crossed by the arrow), which disappears as the modal resolution is increased.
Similar behaviours are observed for the other flow conditions analysed in this article.

Appendix B. Scaling calculations for the dominant eigenvalue
By enforcing the localization ansatz, and the invariance property of the dominant

convection-enhanced eigenfunction expressed by (3.11), it is possible to obtain
analytically the dependence of the scaling exponent γ on the flow conditions. The
technique used is identical to the derivation developed in § 3.3 for the Couette plug
flow. Since (3.5) is a basic ingredient to derive the asymptotic scaling, it is useful to
rewrite it in a more compact form. Let

〈ψd, w〉 =

∫ 1

0

ρw(ρ) ψd(ρ) dρ = Gw,R + i Gw,I ,

〈ψd, V 〉 =

∫ 1

0

ρV (ρ) ψd(ρ) dρ = GV,R + i GV,I .

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (B 1)

By solving (3.5) for the real part μd of the eigenvalue, one obtains

−μd =

(
GV,I Gw,R − GV,RGw,I

)
(Gw,R)2 + (Gw,I )2

. (B 2)
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Consider first the condition for which the localization occurs at the inner cylinder
radius ρ∗ = κ , as e.g. for κ = 0.8, Ω =(0, 1). In a neighbourhood of ρ∗, V (ρ) and w(ρ)
admit the following series expansion:

V (ρ) = V1(ρ−κ)+V2(ρ−κ)2+O(|ρ−κ |3), w(ρ) = w1(ρ−κ)+w2(ρ−κ)2+O(|ρ−κ |3),

(B 3)

where Vh, wh h = 1, 2 are constant. Making use of the invariance equation (3.11), and
introducing the auxiliary integration variable ξ defined as ρ = κ + ξ β(εα), the norm
||ψd ||2w can be expressed as

||ψd ||2w =

∫ 1

κ

ρ w(ρ) |ψd |2(ρ) dρ = A2(εα)β
2(εα)w1κC1 + O(β3) C1 =

∫ ∞

0

ξ |ψd,i(ξ )|2 dξ .

(B 4)
The upper integration limit in the definition of the constant C1 is set to ∞ since, for
large Pe, (1 − κ)/β(εα) → ∞. Similarly,

||∂ρψd ||2L2 =

∫ 1

κ

ρ

∣∣∣∣∂ψd(ρ)

∂ρ

∣∣∣∣2 dρ =
A(εα)

2 κ

β(εα)
(D0 + O(β)) , D0 =

∫ ∞

0

∣∣∣∣∂ψd,i(ξ )

∂ξ

∣∣∣∣2 dξ,

(B 5)

||ψ/ρ||2L2 =

∫ 1

κ

1

ρ
|ψd(ρ)|2 dρ =

A2(εα)β(εα)

κ
C0 + O

(
β2

)
, C0 =

∫ ∞

0

|ψd,i(ξ )|2 dξ .

(B 6)
Gathering (B 4)–(B 6), and substituting them into (3.8), one obtains

−μd ∼ εαD0

w1C1

1

β3(εα)
+ O

(
β−2

)
=

K0 εα

β3(εα)
+ O

(
β−2

)
, (B 7)

where K0 = D0/w1C1. Consider now (B 2). From the local expansion (B 3), it follows
that

Gw =

∫ 1

κ

ρ
[
w1(ρ − κ) + O

(
|ρ − κ |2

)]
ψd(ρ) dρ = A(εα)κw1β

2(εα)G
1 + O

(
β3

)
,

(B 8)
where Gh =

∫ ∞
0

ξh ψd,i(ξ )dξ = Gh
R + iGh

I , h = 0, 1, 2, . . . . Therefore, the denominator
of (B 2) reads

(Gw,R)2 + (Gw,I )
2 = A2(εα)κ

2w2
1β

4(εα)
[(

G1
R

)2
+

(
G1

I

)2
]

+ O
(
β6

)
. (B 9)

For estimating the numerator of (B 2), it is convenient to observe that the potential
V (ρ) in the neighbourhood of the localization abscissa ρ = κ can be expressed as a
function of w(ρ) as

V (ρ)

w(ρ)
= a0 + a1(ρ − κ) + O(|ρ − κ |2). (B 10)

Therefore,

GV = a0Gw + a1w1

∫ 1

κ

ρ (ρ − κ)2 ψd(ρ) dρ +

∫ 1

κ

ρ O(|ρ − κ |3) ψd(ρ) dρ

= a0Gw + A(εα)a1w1κβ3(εα) G2 + O(β4). (B 11)

This leads to the following expression for the numerator of (B 2):

GV,IGw,R − GV,RGw,I = A2(εα)a1w
2
1κ

2β5(εα)
(
G2

IG
1
R − G2

RG1
I

)
+ O

(
β6

)
. (B 12)
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Substituting (B 9), (B 12) into (B 2) one obtains

−μd = K1β + O
(
β2

)
, (B 13)

where K1 = a1(G
2
IG

1
R − G2

RG1
I ). From (B 7), (B 13), the following expression for β(εα)

is obtained to the leading order

β(εα) =

(
K0

K1

)1/4

ε1/4
α , (B 14)

which provides for −μd the scaling law

−μd = K1

(
K0

K1

)1/4

ε1/4
α ∼ Pe−1/4. (B 15)

This result is in agreement with the value γ =1/4 found for κ = 0.8, Ω = (0, 1).
Consider now the case κ = 0.4, Ω = (0, 1), which is characterized by the occurrence

of a local quadratic minimum at an internal radial abscissa ρ∗. The function w(ρ)
and Veff (ρ) close to ρ∗ can be expanded in Taylor series as

w(ρ) = w0 + w1(ρ − ρ∗) + O
(
|ρ − ρ∗|2

)
, (B 16)

Veff (ρ) =
V (ρ)

w(ρ)
= a0 + a2(ρ − ρ∗)2 + O

(
|ρ − ρ∗|3

)
. (B 17)

In this case one obtains

||ψd ||2w = A2(εα)β(εα)w0κC0 + O(β2), C0 =

∫ ∞

−∞
|ψd,i(ξ )|2 dξ

||∂ρψd ||2L2 =
A2(εα)κ

β
D0 + O(1) , D0 =

∫ ∞

−∞
|∂ξψd,i |2 dξ

||ψd/ρ||2L2 =
A2(εα)β(εα)

κ
C0 + O(β2).

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(B 18)

The difference with respect to the previous case is that now w(ρ) is, to the leading
order, constant in a neighbourhood of the localization abscissa, whereas in the
previous case the leading order of w(ρ) close to ρ∗ was linear. The different local
behaviour of w(ρ) near ρ implies a different scaling of ||ψd ||2w with β(εα) in the two
cases. Since ρ∗ is an internal point, the lower and upper integration limits are now
±∞ since for εα → 0 (κ − ρ∗)/β(εα) → −∞, and (1 − ρ∗)/β(εα) → ∞. The substitution
of the expressions for the norms of (B 18) entering (3.8) provides

−μd =
K0 εα

β2(εα)
+ O(β−1). (B 19)

For deriving the expression at the right-hand side of (B 2), it is sufficient to observe
that O(1) is the leading order for w(ρ) close to ρ∗. This implies for the denominator
of (B 2):

(Gw,R)2 + (Gw,I )
2 = A2(εα)κ

2w2
0β

2(εα)
[
(G0

R)2 + (G0
I )

2
]
+ O

(
β4

)
. (B 20)

For Gw one obtains

Gw = A(εα)w0κβ(εα)G
0 + O(β2). (B 21)
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The expression of GV can be obtained by enforcing (B 17), namely the fact that V (ρ)
is proportional to w(ρ) close to ρ∗ plus a quadratic contribution. This yields

GV = a0Gw + a2w0

∫ 1

κ

ρ (ρ − ρ∗)2 ψd(ρ) dρ +

∫ 1

κ

ρ O(|ρ − ρ∗|3) ψd(ρ) dρ

= a0Gw + a2A(εα)w0κβ3(εα)G
2 + O(β4). (B 22)

Observe that all the quantities Gh, h =0, 1, 2 introduced are identical to the
corresponding quantities defined in the previous case, with the only difference that
now the lower integration limit is −∞ instead of 0. Equations (B 21)–(B 22) provide
for the numerator of (B 2) the following expression:

GV,IGw,R − GV,RGw,I = A2(εα)a2w
2
0κ

2β4(εα)
(
G2

IG
0
R − G2

RG0
I

)
+ O(β5). (B 23)

Consequently, (B 2) returns the following relation between μd and β(εα):

−μd = K1β
2(εα) + O(β3), (B 24)

where K1 = a2(G
2
IG

0
R − G2

RG0
I ). From (B 19) and (B 24), β(εα) can be expressed, to the

leading order, as a function of εα for εα → 0 as

β(εα) =

(
K0

K1

)1/4

ε1/4
α (B 25)

and, via (B 24), the asymptotic scaling of μd versus εα is derived:

−μd = K1

(
K0

K1

)1/2

ε1/2
α ∼ Pe−1/2. (B 26)

Equation (B 26) predicts the asymptotic scaling exponent γ =1/2 found for κ = 0.4,
Ω = (0, 1).

Let us next analyse the last situation observed in the open Couette flow,
corresponding to the rotation condition Ω =(−1, 1), for which Veff (ρ) is a
monotonically increasing function of ρ, diverging to ±∞ in the near-wall regions.
In this case the localization ansatz predicts that eigenfunction localization occurs at
an internal point ρ∗. Close to the localization point ρ∗, the functions Close to the
localization point ρ∗, the functions w(ρ) and V (ρ) behaves as

w(ρ) = w0 + w1(ρ − ρ∗) + O(|ρ − ρ∗|2), (B 27)

Veff (ρ) =
V (ρ)

w(ρ)
= a0 + a1(ρ − ρ∗) + O(|ρ − ρ∗|2). (B 28)

Observe that the local behaviour of w(ρ) is identical to the previous case κ = 0.4,
Ω = (0, 1). The main difference with respect to that operating condition is that now
Veff (ρ) is locally linear (and not quadratic) close to ρ∗. From this observation it follows
that the norm estimates for ||ψd ||2w , ||∂ρψ ||2

L2 and ||ψ/ρ||2
L2 are still given by (B 18),

and consequently (B 19) holds for −μd . The expressions (B 27)–(B 28) substituted into
the integrals entering (B 2) lead to the following alternative equation for μd (we omit
all the algebraic manipulations which are substantially identical to the previous case):

−μd = K1β(εα) + O(β2), (B 29)

where K1 = a1(G
1
IG

0
R − G1

RG0
I ). From (B 18), (B 29), it follows that

β(εα) =

(
K0

K1

)1/3

ε1/3
α , (B 30)
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which corresponds to the following expression for μd in the asymptotic limit for
large Pe

−μd = K1

(
K0

K1

)1/3

ε1/3
α ∼ Pe−1/3. (B 31)

Equation (B 31) provides a theoretical explanation (by assuming the validity of the
localization ansatz) of the exponent γ = 1/3 observed for Ω = (−1, 1) independently
of κ .

The analysis developed in Appendix B can be generalized to the local behaviour
of w(ρ) and Vef (ρ) near the localization point ρ∗ expressed by (5.4), By performing
calculations identical to those developed in Appendix B one obtains in this case for
γ the expression (5.5).
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